Populations

EPAR Presentation #281
Publication Date: 08/12/2014
Type: Data Analysis
Abstract

This research project examines the traits of Tanzanian farmers living in five different farming system-based sub-regions: the Northern Highlands, Sukumaland, Central Maize, Coastal Cassava, and Zanzibar. We conducted quantitative analysis on data from the Tanzania National Panel Survey (TNPS). We complimented this analysis with qualitative data from fieldwork conducted in the summer of 2011 and September 2013 to present a quantitatively and qualitatively informed profile of the “typical” agricultural household’s land use patterns, demographic dynamics, and key issues or production constraints in each sub-region.

EPAR Research Brief #285
Publication Date: 06/19/2014
Type: Literature Review
Abstract

This brief draws on recent reports by the OECD, the World Bank, the Overseas Development Institute (ODI), the Climate Policy Initiative (CPI) and others to provide an overview of climate finance in developing countries. The brief is divided into three sections: (i) sources of global climate finance; (ii) country-level flows of climate finance; and (iii) applications of climate finance in developing countries. The brief is designed to give a concise overview of financial flows directed at climate change mitigation and adaptation globally and in developing countries, with an introduction to climate finance accounting such that climate financial flow volumes can be compared to aid volumes in other sectors. Total global climate finance flows were approximately USD $364 billion in 2011 (Buchner et al., 2012) and $359 billion in 2012. However the vast majority of these flows - 76%, or $275 billion - was finance generated and spent within a country’s own borders (domestic finance) (Buchner et al., 2013). The “Fast-Start Finance” period from 2010-2012 saw $35 billion in new aid mobilized for climate finance in developing countries. Developed countries have recently committed to mobilize an additional $100 billion per year by 2020.

EPAR Research Brief #228
Publication Date: 04/18/2014
Type: Literature Review
Abstract

Cassava (Manihot esculenta Crantz) is a widely-grown staple food in the tropical and subtropical regions of Africa, Asia, and Latin America. In this brief we examine the environmental constraints to, and impacts of, smallholder cassava production systems in Sub-Saharan Africa (SSA) and South Asia (SA), noting where the analysis applies to only one of these regions. We highlight crop-environment interactions at three stages of the cassava value chain: pre-production (e.g., land clearing), production (e.g., soil, water, and input use), and post-production (e.g., crop storage). At each stage we emphasize environmental constraints on production (poor soil quality, water scarcity, crop pests, etc.) and also environmental impacts of crop production (e.g., soil erosion, water depletion and pesticide contamination). We then highlight good practices for overcoming environmental constraints and minimizing environmental impacts in smallholder cassava production systems. Evidence on environmental issues in smallholder cassava production is relatively thin, and unevenly distributed across regions. The literature on cassava in South Asian smallholder systems is limited, reflecting a crop of secondary importance (though it is widely found elsewhere in Asia such as South East Asia), in comparison to cassava in much of SSA. The majority of the research summarized in this brief is from SSA. The last row of Table 1 summarizes good practices currently identified in the literature. However, the appropriate strategy in a given situation will vary widely based on contextual factors, such as local environmental conditions, market access, cultural preferences, production practices and the policy environment.

EPAR Technical Report #254
Publication Date: 03/20/2014
Type: Literature Review
Abstract

This overview introduces a series of EPAR briefs in the Agriculture-Environment Series that examine crop-environment interactions for a range of crops in smallholder food production systems in Sub-Saharan Africa (SSA) and South Asia (SA). The briefs cover the following important food crops in those regions; rice (#208), maize (#218), sorghum/millets (#213), sweet potato/yam (#225), and cassava (#228).

Drawing on the academic literature and the field expertise of crop scientists, these briefs highlight crop-environment interactions at three stages of the crop value chain: pre-production (e.g., land clearing and tilling), production (such as water, nutrient and other input use), and post-production (e.g., waste disposal and crop storage). At each stage we emphasize environmental constraints on crop yields (including poor soils, water scarcity, crop pests) and impacts of crop production on the environment (such as soil erosion, water depletion and pest resistance). We then highlight best practices from the literature and from expert experience for minimizing negative environmental impacts in smallholder crop production systems.

This overview (along with the accompanying detailed crop briefs) seeks to provide a framework for stimulating across-crop discussions and informed debates on the full range of crop-environment interactions in agricultural development initiatives.

A paper based on this research series was published in Food Security in August 2015.

EPAR Technical Report #200
Publication Date: 08/24/2012
Type: Literature Review
Abstract

This report investigates the potential environmental and socio-economic benefits and costs of glyphosate resistant cassava.  Glyphosate resistant crops (also referred to as glyphosate tolerant) have been rapidly adopted by a number of crop producers because they simplify and/or reduce the cost of weed management. Glyphosate resistant crops also provide external environmental benefits by promoting reduced tillage agriculture, decreasing erosion and increasing soil health. However, glyphosate resistant crops also have some environmental costs, potentially leading to increased use of herbicides and environmental contamination. Because transgenic glyphosate resistant cassava is not currently in use, literature on its potential environmental and socioeconomic costs and benefits is limited. Therefore, this report draws on the literature for glyphosate resistant crops that are in current use, including maize, soybeans, sugar beets and canola (rapeseed). We find that socioeconomic and environmental impacts of glyphosate resistant crops differ by crop-type, agroecological conditions, production systems and local regulatory structure. Therefore, some benefits and costs associated with other glyphosate resistant crops may not be applicable to glyphosate resistant cassava. 

EPAR Technical Report #184
Publication Date: 07/11/2012
Type:
Abstract

This brief provides an overview of the national and zonal characteristics of agricultural production in Tanzania using the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). More detailed information and analysis is available in the separate EPAR Tanzania LSMS-ISA Reference Report, Sections A-G.

EPAR Research Brief #119
Publication Date: 12/17/2010
Type: Literature Review
Abstract

This brief summarizes the literature on caloric and lipid deficiencies and their contribution to nutritional outcomes, and identifies key studies and pieces of literature related to this topic.

EPAR Technical Report #115
Publication Date: 12/14/2010
Type: Literature Review
Abstract

As part of the Crops & Climate Change series, this brief is presented in three parts: 1) An evaluation of the importance of Sorghum and Millet in SSA, based on production, net exports, and caloric need, 2) A novel analysis of historical and projected climate conditions in Sorghum and Millet growing regions, followed by a summary of the agronomic and physiological vulnerability of Sorghum and Millet crops, 3) A summary of current resources dedicated to sorghum and millet, based on research and development investments and National Adaptation Programmes of Action. Our analysis indicates that sorghum and millets may become increasingly important in those areas of SSA predicted to become hotter and subject to more variable precipitation as a result of climate change. Although sorghum and millet are currently grown on marginal agricultural lands and consumed for subsistence by poorer population segments, climate change could render these drought- and heat-tolerant crops the most viable future cereal production option in some areas where other cereals are currently grown. Fewer international development resources are currently devoted to sorghum and millet than are devoted to other cereal grains, and current resource allocation may not reflect the increased reliance on these grains necessitated by projected climactic changes.

EPAR Technical Report #114
Publication Date: 12/14/2010
Type: Literature Review
Abstract

As part of the Crops & Climate Change series, this brief is presented in three parts: 1) An evaluation of the importance of wheat in SSA, based on production, net exports, and caloric need, 2) A novel analysis of historical and projected climate conditions in wheat-growing regions, followed by a summary of the agronomic and physiological vulnerability of wheat crops, 3) A summary of current resources dedicated to wheat, based on research and development investments and National Adaptation Programmes of Action. Overall, this analysis indicates that the importance of wheat as an imported product remains high throughout SSA, though food crop production and dependence is concentrated in a relatively small area. Wheat-growing regions throughout SSA are likely to face yield decreases as a result of predicted rises in temperatures and possible changes in precipitation. Resources intended to aid adaptation to climate change flow primarily from public sector research and development efforts, though country-level adaptation strategies have not prioritized wheat.

EPAR Technical Report #102
Publication Date: 12/13/2010
Type: Literature Review
Abstract

Water is a critical input for significantly enhancing smallholder farmer productivity in Sub-Saharan Africa (SSA) where less than 5% of farm land is irrigated, and in India where 42% of farm land is irrigated.  For many years, donors have invested in human-powered treadle pump technologies as a point of entry for smallholder farmers unable to afford motorized pumps. In spite of some successes in treadle pump promotion, however, there is a widespread perception that as soon as smallholder farmers can afford to they quickly transition to motorized diesel- powered pumps. While diesel pumps substantially ease farmers’ workload, they pollute excessively (both in terms of local air quality and greenhouse gas emissions), pump excessive amounts of water, and put farmers at the mercy of cyclical spikes in fuel prices. This brief provides an overview of state-of-the-art alternative energy pumps, including technologies available and implementation lessons learned from China, India, Africa, South America and other regions. Through a literature review, written surveys and phone interviews with water pump producers and non-governmental organizations (NGOs) we evaluate the availability, affordability, and adoption rates of alternative energy technologies in developing countries. Our findings suggest that no single alternative energy water pumping system is a “silver bullet” for rural smallholder irrigation needs. Biofuels may prove a successful short- to intermediate-term solution for farmers who already have access to diesel pumps, but other problems associated with diesel engines, including high maintenance costs and excessive water use remain even when biofuels are used. Solar systems eliminate pollution almost entirely, reduce water consumption, and eliminate the need to purchase fuels. However solar systems are typically prohibitively expensive for smallholder farmers. Wind powered pumping solutions have not proven successful to date, with high costs and irregular wind patterns (either too little or too much wind) proving substantial barriers to widespread adoption.