Research Topics

EPAR Technical Report #374
Publication Date: 04/25/2019
Type: Portfolio Review
Abstract
EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR TECHNICAL REPORT #362
Publication Date: 01/16/2019
Type: Data Analysis
Abstract

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:

Sub-Populations

  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

Characteristics
In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Technical Report #346
Publication Date: 04/23/2018
Type: Literature Review
Abstract

The private sector is the primary investor in health research and development (R&D) worldwide, with investment annual investment exceeding $150 billion, although only an estimated $5.9 billion is focused on diseases that primarily affect low and middle-income countries (LMICs) (West et al., 2017b). Pharmaceutical companies are the largest source of private spending on global health R&D focused on LMICs, providing $5.6 billion of the $5.9 billion in total private global health R&D per year. This report draws on 10-K forms filed by Pharmaceutical companies with the U.S. Securities and Exchange Commission (SEC) in the year 2016 to examine the evidence for five specific disincentives to private sector investment in drugs, vaccines and therapeutics for global health R&D: scientific uncertainty, weak policy environments, limited revenues and market uncertainty, high fixed costs for research and manufacturing, and imperfect markets. 10-K reports follow a standard format, including a business section and a risk section which include information on financial performance, investment options, lines of research, promising acquisitions and risk factors (scientific, market, and regulatory). As a result, these filings provide a valuable source of information for analyzing how private companies discuss risks and challenges as well as opportunities associated with global health R&D targeting LMICs.

EPAR Technical Report #201
Publication Date: 09/12/2012
Type: Data Analysis
Abstract

This brief explores how two datasets – The Tanzania National Panel Survey (TZNPS) and the TNS-Research International Farmer Focus (FF) – predict the determinants of inorganic fertilizer use among smallholder farmers in Tanzania by using regression analysis. The (TZNPS) was implemented by the Tanzania National Bureau of Statistics, with support from the World Bank Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA) team and includes extensive information on crop productivity and input use. The FF survey was funded by the Bill and Melinda Gates Foundation and implemented by TNS Research International and focuses on the on the behaviors and attitudes of smallholder farmers in Tanzania. The two datasets produce relatively comparable results for the primary predictors of inorganic fertilizer use: agricultural extension and whether or not a household grows cash crops. However, other factors influencing input use produce results that vary in magnitude and direction of the effect across the two datasets. Distinct survey instrument designs make it difficult to test the robustness of the models on input use other than inorganic fertilizer. This brief uses data inorganic fertilizer use, rather than adoption per se. The TZNPS did not ask households how recently they began using a certain product and although the FF survey asked respondents how many new inputs were tried in the past four planting seasons, they did not ask specifically about inorganic fertilizer.

EPAR Technical Report #200
Publication Date: 08/24/2012
Type: Literature Review
Abstract

This report investigates the potential environmental and socio-economic benefits and costs of glyphosate resistant cassava.  Glyphosate resistant crops (also referred to as glyphosate tolerant) have been rapidly adopted by a number of crop producers because they simplify and/or reduce the cost of weed management. Glyphosate resistant crops also provide external environmental benefits by promoting reduced tillage agriculture, decreasing erosion and increasing soil health. However, glyphosate resistant crops also have some environmental costs, potentially leading to increased use of herbicides and environmental contamination. Because transgenic glyphosate resistant cassava is not currently in use, literature on its potential environmental and socioeconomic costs and benefits is limited. Therefore, this report draws on the literature for glyphosate resistant crops that are in current use, including maize, soybeans, sugar beets and canola (rapeseed). We find that socioeconomic and environmental impacts of glyphosate resistant crops differ by crop-type, agroecological conditions, production systems and local regulatory structure. Therefore, some benefits and costs associated with other glyphosate resistant crops may not be applicable to glyphosate resistant cassava. 

EPAR Technical Report #184
Publication Date: 07/11/2012
Type:
Abstract

This brief provides an overview of the national and zonal characteristics of agricultural production in Tanzania using the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). More detailed information and analysis is available in the separate EPAR Tanzania LSMS-ISA Reference Report, Sections A-G.

EPAR Research Brief #196
Publication Date: 06/12/2012
Type: Data Analysis
Abstract

This brief presents our analysis of market access in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). The TZNPS asked few direct questions about market access. However, farmers reported information about market participation that sheds light on several important components of the value chain: input markets, including both goods and services; crop storage, processing, and transport; and sales of outputs. A separate appendix includes additional detail on our analyses.

EPAR Research Brief #190
Publication Date: 03/30/2012
Type: Data Analysis
Abstract

This brief presents a comparative analysis of men and women and of male- and female-headed households in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We compare farm activity, productivity, input use, and sales as well as labor allocations by gender of the respondent and of the household head. In households designated “female-headed” a woman was the decision maker in the household, took part in the economy, control and welfare of the household, and was recognized by others in the household as the head. For questions regarding household labor (both non-farm and farm), the gender of the individual laborer is recorded, and we use this to illustrate the responsibilities of male and female household members. An appendix provides the details for our analyses.