Research Topics

EPAR Research Brief #342
Publication Date: 07/28/2016
Type: Research Brief
Abstract

This brief presents an overview of EPAR’s previous research on nutrition and food security and outlines summaries and key findings from 15 technical reports and research briefs. Key findings are drawn from our own original analyses as well as from other sources, which are cited in the individual reports. We also include appendices briefly summarizing EPAR’s research on health and climate change, topics somewhat related to nutrition and food security, and EPAR’s confidential work on nutrition and food security.

EPAR Technical Report #337
Publication Date: 06/20/2016
Type: Data Analysis
Abstract

Relative to chronic hunger, seasonal hunger in rural and urban areas of Africa is poorly understood. No estimates are compiled, and limited evidence exists on prevalence, causes, and impacts. This paper contributes to the body of evidence by examining the extent and potential drivers of seasonal hunger using panel data from the Malawi Integrated Household Panel Survey (IHPS). Farmers are commonly thought to use various strategies to smooth consumption, including planting “off-season” crops, investing in post-harvest storage technologies, or generally diversifying farm portfolios including livestock products and/or wild crops. Similarly, when markets are available, farmers may diversify through off-farm income sources in order to purchase food in lean seasons. We investigate whether seasonal hunger – distinct from chronic hunger – exists in Malawi, drawing on two waves of panel data from the LSMS-ISA series. We examine the extent of seasonal hunger, factors associated with variation in seasonal hunger, and how recurring and longer-term seasonal hunger might be associated with various household welfare measures. We find that both urban and rural households report experiencing seasonal hunger in the pre-harvest months, with descriptive evidence suggesting male gender, age, and education of household head, livestock ownership, and storage of crops are associated with lower levels of seasonal hunger. In addition, we find that Malawian households with seasonal hunger harvest crops earlier than average – a short-term coping mechanism that can reduce the crop’s yield and nutritional value, possibly perpetuating hunger.

Code
EPAR Research Brief #332
Publication Date: 02/26/2016
Type: Literature Review
Abstract

Household survey data are a key source of information for policy-makers at all levels. In developing countries, household data are commonly used to target interventions and evaluate progress towards development goals. The World Bank’s Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) are a particularly rich source of nationally-representative panel data for six Sub-Saharan African countries: Ethiopia, Malawi, Niger, Nigeria, Tanzania, and Uganda. To help understand how these data are used, EPAR reviewed the existing literature referencing the LSMS-ISA and identified 415 publications, working papers, reports, and presentations with primary research based on LSMS-ISA data. We find that use of the LSMS-ISA has been increasing each year since the first survey waves were made available in 2009, with several universities, multilateral organizations, government offices, and research groups across the globe using the data to answer questions on agricultural productivity, farm management, poverty and welfare, nutrition, and several other topics.

EPAR Research Brief #319
Publication Date: 01/29/2016
Type: Research Brief
Abstract

This four-part analysis describes the current suite of food security measures, then analyzes the respective relationships between food security and poverty, GDP, and crop yields using findings from in-depth literature reviews. Food security measures are criticized for inaccurately characterizing food security at individual, household, and national scales, yet guidelines exist to prescribe a food security measure for a given situation. Some authors see the potential of a combination of indicators that apply at different scales rather than a single, universal food security measure. Limited literature exists on the relationship between food security and poverty, GDP, or crop yields. The relationship between food security and poverty is particularly challenging because neither term has a consistent definition, and the limited literature suggests a lack of consensus among experts. Little empirical research exists on the relationship between food security and GDP, though studies generally note an association between the two Studies that evaluate food security and crop yields provide limited evidence that the two are associated, though many studies use measures of crop yield as food security indicators and vice versa. More research is needed to establish whether there are preferred food security measurement tools for specific scales and situations, and to further explore the relationship between food security and poverty, GDP, and crop yields.

EPAR Research Brief #225
Publication Date: 10/15/2013
Type: Literature Review
Abstract

After cereals, root and tuber crops - including sweetpotato and yam (in addition to cassava and aroids), are the second most cultivated crops in tropical countries. This literature review examines the environmental constraints to, and impacts of, sweetpotato and yam production systems in Sub-Saharan Africa (SSA) and South Asia (SA). The review highlights crop-environment interactions at three stages of the sweetpotato/yam value chain: pre-production (e.g., land clearing), production (e.g., soil, water, and input use), and post-production (e.g., waste disposal, crop storage and transport). We find that sweetpotato and yam face similar environmental stressors. In particular, because sweetpotato and yam are vegetatively propagated, the most significant (and avoidable) environmental constraints to crop yields include disease and pest infection transmitted through the use of contaminated planting materials. Published estimates suggest yield gains in the range of 30–60% can be obtained through using healthy planting material. Moreover, reducing pest damage in the field can greatly increase the storage life of root and tuber crops after harvest – currently losses from rot and desiccation can claim up to 100% of stored sweetpotato and yam on smallholder farms.

EPAR Research Brief #215
Publication Date: 08/31/2013
Type: Literature Review
Abstract

Maize has expanded through the 20th and into the 21st century to become the principle staple food crop produced and consumed by smallholder farm households in Sub-Saharan Africa (SSA), and maize production has also expanded in South Asia (SA) farming systems. In this brief we examine the environmental constraints to, and impacts of, smallholder maize production systems in SSA and SA, noting where findings apply to only one of these regions. We highlight crop-environment interactions at three stages of the maize value chain: pre-production (e.g., land clearing), production (e.g., fertilizer, water, and other input use), and post-production (e.g., waste disposal and crop storage). At each stage we emphasize environmental constraints on maize production (such as poor soil quality, water scarcity, or crop pests) and also environmental impacts of maize production (such as soil erosion, water depletion, or chemical contamination). We then highlight best or good practices for overcoming environmental constraints and minimizing environmental impacts in smallholder maize production systems. Evidence on environmental constraints and impacts in smallholder maize production is uneven. Many environmental concerns such as biodiversity loss are commonly demonstrated more broadly for the agroecology or farming systems in which maize is grown, rather than specifically for the maize crop. And more research is available on the environmental impacts of agrochemical-based intensive cereal farming in Asia (where high-input maize is a common component) than on the low-input subsistence-scale maize cultivation more typical of SSA. Decisive constraint and impact estimates are further complicated by the fact that many crop-environment interactions in maize and other crops are a matter of both cause and effect (e.g., poor soils decrease maize yields, while repeated maize harvests degrade soils). Fully understanding maize-environment interactions thus requires recognizing instances where shortterm adaptations to environmental constraints might be exacerbating other medium- or long-term environmental problems. Conclusions on the strength of published findings on crop-environment interactions in maize systems further depend on one’s weighting of economic versus ecological perspectives, physical science versus social science, academic versus grey literature, and quantity versus quality of methods and findings.

EPAR Research Brief #213
Publication Date: 08/31/2013
Type: Literature Review
Abstract

 In this brief we examine the environmental constraints to, and impacts of, smallholder sorghum and millet production systems in Sub-Saharan Africa (SSA) and South Asia (SA). Millet in this paper primarily refers to pearl millet (Pennisetum glaucum), although a number of other millets of significance to smallholder production and food security are also discussed. Sorghum and millets are known for being more tolerant of major environmental stresses including drought and poor soil quality than other major cereals. But water availability is still among the greatest constraints to increased grain production, and soil fertility also significantly limits yields, especially in cases where cultivation occurs on marginal lands and where crop residues are removed for alternative uses. Ultimately sorghum and millets’ relatively higher tolerance to abiotic stresses is expected to promote an increase in global cropping area for sorghum and millets as an adaptation to climate change. Sorghum and millet exhibit relatively few of the environmental impacts commonly associated with more intensively cultivated crops such as fertilizer runoff, pesticide contamination, or water depletion, since both of these crops are overwhelmingly grown by smallholder farmers with few, if any, chemical or irrigation inputs. Nevertheless, the tendency to grow sorghum and millet on marginal and heavily sloped lands does pose some environmental risks – including soil degradation and erosion – that can be mitigated through the adoption of best practices as described in the brief. 

EPAR Research Brief #208
Publication Date: 05/01/2013
Type: Literature Review
Abstract

Rice is the most important food crop of the developing world and is grown on over 155 million ha worldwide. Food security of the poor, especially in Asia, depends critically on rice availability at an affordable price. In this brief we examine the environmental constraints to, and impacts of, smallholder rice production systems in South Asia (SA) and Sub-Saharan Africa (SSA), noting where the analysis applies to only one of these regions. We highlight crop-environment interactions at three stages of the rice value chain: pre-production (e.g., land clearing), production (e.g., water and other input use), and post-production (e.g., waste disposal). At each stage we emphasize environmental constraints on production (e.g., poor soil quality, water scarcity, crop pests) and also environmental impacts of crop production (e.g., soil erosion, water depletion, pest resistance). We then highlight best or good practices for minimizing negative environmental impacts in smallholder rice production systems. Evidence on environmental issues in smallholder rice production is uneven. Far more research is available for Asian rice production systems, as compared to African rice systems. And with the possible exception of the evidence on water limits to increasing productivity, conclusions on the strength of published findings on crop-environment interactions in rice depends on one’s weighting of economic versus ecological perspectives, physical science versus social science, academic versus grey literature, and quantity versus quality of methods and findings.

EPAR Research Brief #212
Publication Date: 03/05/2013
Type: Literature Review
Abstract

This literature review examines the environmental constraints to, and impacts of, wheat production systems in South Asia (SA) and Sub-Saharan Africa (SSA). The review highlights crop-environment interactions at three stages of the wheat value chain: pre-production (e.g., land availability), production (e.g., heat, water, and soil), and post-production (e.g. storage, crop residues, and transport). At each stage we emphasize environmental constraints on production (e.g., poor soil quality, water scarcity, crop pests, etc.) and also environmental impacts of crop production (e.g., soil degradation, water depletion and pollution, greenhouse gas emissions, etc.). We then highlight published best practices for overcoming environmental constraints and minimizing environmental impacts in wheat production systems. We find that wheat is a significant crop that will need to increase production to meet increasing demand. Most land suitable for wheat production is already under cultivation. Improved production methods are needed to address the demand and avert environmental impacts of producing wheat.  It should not be assumed that improved varieties alone will be able to realistically address growing demands for wheat. Improved variety seeds should be combined with best practices of improved crop management techniques: optimal planting time, zero tillage, fertilizer management, intercropping, crop residue incorporation, and improved storage techniques.

EPAR Technical Report #59
Publication Date: 12/15/2009
Type: Research Brief
Abstract

Agriculture and Climate Change: Part I

With estimated global emissions of 5,969-6,615 metric tons (Mt) of carbon dioxide (CO2) per year, agriculture accounts for about 13.5% of total global anthropogenic emissions of greenhouse gases (GHG). Deforestation contributes about 11.8% of total GHG emissions, releasing about 5,800 Mt CO2 per year. Developing countries are largely responsible for emissions from agriculture and deforestation, with the developing countries of South Asia and East Asia accounting for 17% and 25% of global agricultural emissions respectively. Sub-Saharan Africa (SSA) accounts for about 13% of global emissions from agriculture and 15% of emissions from land use change and forestry. This report examines the biophysical and economic potential of mitigating agriculture and land use GHG emissions, and provides a summary on the current and projected impact of global carbon market mechanisms on emission reductions. 

Agriculture and Climate Change: Part II

This report covers two topics related to agriculture and climate change in developing countries. The first section discusses the role of agricultural offsets in mitigating greenhouse gas emissions. Recent negotiations around a post-Kyoto Protocol agreement have included debate about whether agricultural carbon sequestration projects should be eligible under the Clean Development Mechanism (CDM). We examine the reasons for supporting or opposing this type of CDM reform and how these reasons relate to impacts on development goals and smallholder farmers, scientific uncertainty about carbon sequestration, and philosophical disagreement about the use of emission offsets. The second section covers proposed agricultural adaptation activities in Africa and other developing countries. While the majority of developing countries have outlined immediate adaptation needs in National Adaptation Programs of Action (NAPAs), few have made progress in implementing adaptation activities. We find that issues related to financial resources, scientific and technical information, and capacity building continue to challenge developing countries in preparing for the impacts of climate change.