Research Topics

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR TECHNICAL REPORT #362
Publication Date: 01/16/2019
Type: Data Analysis
Abstract

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:

Sub-Populations

  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

Characteristics
In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Technical Report #335
Publication Date: 11/21/2017
Type: Data Analysis
Abstract
EPAR has developed Stata do.files for the construction of a set of agricultural development indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). We are sharing our code and documenting our construction decisions both to facilitate analyses of these rich datasets and to make estimates of relevant indicators available to a broader audience of potential users. 
Code, Code, Code, Code
EPAR Technical Report #339
Publication Date: 09/28/2017
Type: Data Analysis
Abstract

An ongoing stream of EPAR research considers how public good characteristics of different types of research and development (R&D) and the motivations of different providers of R&D funding affect the relative advantages of alternative funding sources. For this project, we seek to summarize the key public good characteristics of R&D investment for agriculture in general and for different subsets of crops, and hypothesize how these characteristics might be expected to affect public, private, or philanthropic funders’ investment decisions. 

Code
EPAR Technical Report #337
Publication Date: 06/20/2016
Type: Data Analysis
Abstract

Relative to chronic hunger, seasonal hunger in rural and urban areas of Africa is poorly understood. No estimates are compiled, and limited evidence exists on prevalence, causes, and impacts. This paper contributes to the body of evidence by examining the extent and potential drivers of seasonal hunger using panel data from the Malawi Integrated Household Panel Survey (IHPS). Farmers are commonly thought to use various strategies to smooth consumption, including planting “off-season” crops, investing in post-harvest storage technologies, or generally diversifying farm portfolios including livestock products and/or wild crops. Similarly, when markets are available, farmers may diversify through off-farm income sources in order to purchase food in lean seasons. We investigate whether seasonal hunger – distinct from chronic hunger – exists in Malawi, drawing on two waves of panel data from the LSMS-ISA series. We examine the extent of seasonal hunger, factors associated with variation in seasonal hunger, and how recurring and longer-term seasonal hunger might be associated with various household welfare measures. We find that both urban and rural households report experiencing seasonal hunger in the pre-harvest months, with descriptive evidence suggesting male gender, age, and education of household head, livestock ownership, and storage of crops are associated with lower levels of seasonal hunger. In addition, we find that Malawian households with seasonal hunger harvest crops earlier than average – a short-term coping mechanism that can reduce the crop’s yield and nutritional value, possibly perpetuating hunger.

Code
EPAR Research Brief #167
Publication Date: 10/07/2011
Type: Data Analysis
Abstract

This is "Section B" of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present our analyses of household characteristics by gender and by administrative zone, considering landholding size, number of crops grown, yields, livestock, input use, and food consumption.

EPAR Technical Report #165
Publication Date: 10/05/2011
Type: Data Analysis
Abstract

This is "Section G" of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present our analyses of data related to consumption of priority foods, total value of consumption, levels of food consumption and production, including analyses by zone in Tanzania. We find, for example, that the mean total value of household consumption was higher for agricultural households (US$27.28) compared to non-agricultural households (US$26.59), but the mean per capita value of household consumption was higher for non-agricultural households (US$7.32) compared to agricultural households (US$5.24). The mean per capita value of weekly consumption for the Southern zone was only US$5.34, compared to the highest mean per capita value of US$6.63 in the Eastern zone. The Central zone still had the lowest per capita value of consumption at US$4.40.

EPAR Technical Report #154
Publication Date: 09/30/2011
Type: Data Analysis
Abstract

This is the introductory section of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present an overview of report sections, as well as an executive summary of findings on crops and livestock, constraints to productivity, and productivity and nutrition outcomes.