Research Topics

EPAR Research Brief #316
Publication Date: 12/13/2015
Type: Literature Review
Abstract

The literature on poverty’s causes and cures in developing countries posits a variety of contributing factors. Most researchers acknowledge that a sustained exit from poverty is complex and no single causal pathway from poverty to non-poverty exists. In this review, we present a summary framework for categorizing the various theorized pathways out of poverty, and evaluate the empirical evidence for which interventions and resulting outcomes are most frequently and most strongly associated with poverty alleviation. We conducted a literature review on pathways out of poverty for low-income households in developing countries and identified and categorized general strategies and outcomes demonstrated to be empirically associated with poverty alleviation. We organized the general strategies into four asset groups that could be targeted to alleviate poverty: human, natural, built / financial, and social / political. Much of the literature presents positive results on poverty alleviation, but it is difficult to compare across studies because many of the studies were conducted in different countries and at different scales, and use a variety of outcome measures.

EPAR Research Brief #312
Publication Date: 07/30/2015
Type: Literature Review
Abstract

This brief reviews the evidence of realized yield gains by smallholder farmers attributable to the use of high-quality seed and/or improved seed varieties. Our analysis suggests that in most cases, use of improved varieties and/or quality seed is associated with modest yield increases.  In the sample of 395 trials reviewed, positive yield changes accompanied the use of improved variety or quality seed, on average, in 10 out of 12 crops, with rice and cassava as the two exceptions.

EPAR Technical Report #302
Publication Date: 04/29/2015
Type: Literature Review
Abstract

The review consists of a summary of the emergence of agribusiness clusters, SEZs and incubators since 1965 (with a focus on smallholder agriculture-based economies in Latin America, Africa, and Asia), followed by a series of brief case studies of example programs with particular relevance for guiding proposed clusters/incubators in the countries of Ethiopia, Tanzania, Nigeria and the Eastern Indian states of Uttar Pradesh, Bihar, and Odisha. Summary conclusions draw upon published reports and primary analysis of case studies to highlight apparent determinants of success and failure in agribusiness investment clusters and incubators, including characteristics of the business environment (markets, policies) and characteristics of the organizational structure (clusters, accelerators) associated with positive smallholder outcomes. 

EPAR Technical Report #293
Publication Date: 03/31/2015
Type: Literature Review
Abstract

This report reviews the current body of peer-reviewed scholarship exploring the impacts of morbidity on economic growth. This overview seeks to provide a concise introduction to the major theories and empirical evidence linking morbidity – and the myriad different measures of morbidity – to economic growth, which is defined primarily in terms of gross domestic product (GDP) and related metrics (wages, productivity, etc.). Through a systematic review of published manuscripts in the fields of health economics and economic development we further identify the most commonly-used pathways linking morbidity to economic growth. We also highlight the apparent gaps in the empirical literature (i.e., theorized pathways from morbidity to growth that remain relatively untested in the published empirical literature to date).

EPAR Research Brief #225
Publication Date: 10/15/2013
Type: Literature Review
Abstract

After cereals, root and tuber crops - including sweetpotato and yam (in addition to cassava and aroids), are the second most cultivated crops in tropical countries. This literature review examines the environmental constraints to, and impacts of, sweetpotato and yam production systems in Sub-Saharan Africa (SSA) and South Asia (SA). The review highlights crop-environment interactions at three stages of the sweetpotato/yam value chain: pre-production (e.g., land clearing), production (e.g., soil, water, and input use), and post-production (e.g., waste disposal, crop storage and transport). We find that sweetpotato and yam face similar environmental stressors. In particular, because sweetpotato and yam are vegetatively propagated, the most significant (and avoidable) environmental constraints to crop yields include disease and pest infection transmitted through the use of contaminated planting materials. Published estimates suggest yield gains in the range of 30–60% can be obtained through using healthy planting material. Moreover, reducing pest damage in the field can greatly increase the storage life of root and tuber crops after harvest – currently losses from rot and desiccation can claim up to 100% of stored sweetpotato and yam on smallholder farms.

EPAR Research Brief #215
Publication Date: 08/31/2013
Type: Literature Review
Abstract

Maize has expanded through the 20th and into the 21st century to become the principle staple food crop produced and consumed by smallholder farm households in Sub-Saharan Africa (SSA), and maize production has also expanded in South Asia (SA) farming systems. In this brief we examine the environmental constraints to, and impacts of, smallholder maize production systems in SSA and SA, noting where findings apply to only one of these regions. We highlight crop-environment interactions at three stages of the maize value chain: pre-production (e.g., land clearing), production (e.g., fertilizer, water, and other input use), and post-production (e.g., waste disposal and crop storage). At each stage we emphasize environmental constraints on maize production (such as poor soil quality, water scarcity, or crop pests) and also environmental impacts of maize production (such as soil erosion, water depletion, or chemical contamination). We then highlight best or good practices for overcoming environmental constraints and minimizing environmental impacts in smallholder maize production systems. Evidence on environmental constraints and impacts in smallholder maize production is uneven. Many environmental concerns such as biodiversity loss are commonly demonstrated more broadly for the agroecology or farming systems in which maize is grown, rather than specifically for the maize crop. And more research is available on the environmental impacts of agrochemical-based intensive cereal farming in Asia (where high-input maize is a common component) than on the low-input subsistence-scale maize cultivation more typical of SSA. Decisive constraint and impact estimates are further complicated by the fact that many crop-environment interactions in maize and other crops are a matter of both cause and effect (e.g., poor soils decrease maize yields, while repeated maize harvests degrade soils). Fully understanding maize-environment interactions thus requires recognizing instances where shortterm adaptations to environmental constraints might be exacerbating other medium- or long-term environmental problems. Conclusions on the strength of published findings on crop-environment interactions in maize systems further depend on one’s weighting of economic versus ecological perspectives, physical science versus social science, academic versus grey literature, and quantity versus quality of methods and findings.

EPAR Research Brief #213
Publication Date: 08/31/2013
Type: Literature Review
Abstract

 In this brief we examine the environmental constraints to, and impacts of, smallholder sorghum and millet production systems in Sub-Saharan Africa (SSA) and South Asia (SA). Millet in this paper primarily refers to pearl millet (Pennisetum glaucum), although a number of other millets of significance to smallholder production and food security are also discussed. Sorghum and millets are known for being more tolerant of major environmental stresses including drought and poor soil quality than other major cereals. But water availability is still among the greatest constraints to increased grain production, and soil fertility also significantly limits yields, especially in cases where cultivation occurs on marginal lands and where crop residues are removed for alternative uses. Ultimately sorghum and millets’ relatively higher tolerance to abiotic stresses is expected to promote an increase in global cropping area for sorghum and millets as an adaptation to climate change. Sorghum and millet exhibit relatively few of the environmental impacts commonly associated with more intensively cultivated crops such as fertilizer runoff, pesticide contamination, or water depletion, since both of these crops are overwhelmingly grown by smallholder farmers with few, if any, chemical or irrigation inputs. Nevertheless, the tendency to grow sorghum and millet on marginal and heavily sloped lands does pose some environmental risks – including soil degradation and erosion – that can be mitigated through the adoption of best practices as described in the brief. 

EPAR Research Brief #208
Publication Date: 05/01/2013
Type: Literature Review
Abstract

Rice is the most important food crop of the developing world and is grown on over 155 million ha worldwide. Food security of the poor, especially in Asia, depends critically on rice availability at an affordable price. In this brief we examine the environmental constraints to, and impacts of, smallholder rice production systems in South Asia (SA) and Sub-Saharan Africa (SSA), noting where the analysis applies to only one of these regions. We highlight crop-environment interactions at three stages of the rice value chain: pre-production (e.g., land clearing), production (e.g., water and other input use), and post-production (e.g., waste disposal). At each stage we emphasize environmental constraints on production (e.g., poor soil quality, water scarcity, crop pests) and also environmental impacts of crop production (e.g., soil erosion, water depletion, pest resistance). We then highlight best or good practices for minimizing negative environmental impacts in smallholder rice production systems. Evidence on environmental issues in smallholder rice production is uneven. Far more research is available for Asian rice production systems, as compared to African rice systems. And with the possible exception of the evidence on water limits to increasing productivity, conclusions on the strength of published findings on crop-environment interactions in rice depends on one’s weighting of economic versus ecological perspectives, physical science versus social science, academic versus grey literature, and quantity versus quality of methods and findings.

EPAR Research Brief #212
Publication Date: 03/05/2013
Type: Literature Review
Abstract

This literature review examines the environmental constraints to, and impacts of, wheat production systems in South Asia (SA) and Sub-Saharan Africa (SSA). The review highlights crop-environment interactions at three stages of the wheat value chain: pre-production (e.g., land availability), production (e.g., heat, water, and soil), and post-production (e.g. storage, crop residues, and transport). At each stage we emphasize environmental constraints on production (e.g., poor soil quality, water scarcity, crop pests, etc.) and also environmental impacts of crop production (e.g., soil degradation, water depletion and pollution, greenhouse gas emissions, etc.). We then highlight published best practices for overcoming environmental constraints and minimizing environmental impacts in wheat production systems. We find that wheat is a significant crop that will need to increase production to meet increasing demand. Most land suitable for wheat production is already under cultivation. Improved production methods are needed to address the demand and avert environmental impacts of producing wheat.  It should not be assumed that improved varieties alone will be able to realistically address growing demands for wheat. Improved variety seeds should be combined with best practices of improved crop management techniques: optimal planting time, zero tillage, fertilizer management, intercropping, crop residue incorporation, and improved storage techniques.