Research Topics

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR Technical Report #269
Publication Date: 05/21/2014
Type: Literature Review
Abstract

The commercial alcohol industry in Africa may provide opportunities to increase market access and incomes for smallholder farmers by increasing access to agriculture-alcohol value chains. Despite the benefits of increased market opportunities, the high costs to human health and social welfare from increased alcohol use and alcoholism could contribute to a net loss for society. To better understand the tradeoffs between increased market access for smallholders and societal costs associated with harmful alcohol consumption, this paper provides an inventory of the societal costs of alcohol in Sub-Saharan Africa (SSA). We examine direct costs associated with addressing harmful effects of alcohol and treating alcohol-related illnesses, as well as indirect costs associated with the goods and services that are not delivered as a consequence of drinking and its impact on personal productivity. We identified resources using Google Scholar and the University of Washington libraries, and utilized the Global Burden of Disease (GBD) database by the Institute for Health Metrics and Evaluation (IHME) and the World Health Organization’s Global Information System on Alcohol and Health (GISAH) database. We also utilized FAOSTAT to retrieve raw data on national-level alcohol production and export statistics. We find that hazardous alcohol use contributes to early mortality and morbidity, loss of productivity, property damage, and other social costs and harms for drinkers and those around them. Drinking also affects vulnerable segments of the population disproportionately. Policymakers, local authorities, and donor agencies can use the information presented in this paper to plan and prepare for the higher consumption levels and subsequent social costs that may follow through agricultural development and economic growth in the region.  

EPAR Research Brief #242
Publication Date: 01/08/2014
Type: Data Analysis
Abstract

The purpose of this analysis is to provide a measure of marketable surplus of maize in Tanzania. We proxy marketable surplus with national-level estimates of total maize sold, presumably the surplus for maize producing and consuming households. We also provide national level estimates of total maize produced and estimate “average prices” for Tanzania which allows this quantity to be expressed as an estimate of the value of marketable surplus. The analysis uses the Tanzanian National Panel Survey (TNPS) LSMS – ISA which is a nationally representative panel survey, for the years 2008/2009 and 2010/2011. A spreadsheet provides our estimates for different subsets of the sample and using different approaches to data cleaning and weighting. The total number of households for Tanzania was estimated with linear extrapolation based on the Tanzanian National Bureau of Statistics for the years 2002 and 2012. The weighted proportions of maize-producing and maize-selling households were multiplied to the national estimate of total households. This estimate of total Tanzanian maize-selling and maize-producing households was then multiplied by the average amount sold and by the average amount produced respectively to obtain national level estimates of total maize sold and total maize produced in 2009 and 2011.