Research Topics

Populations

EPAR Technical Report #346
Publication Date: 04/23/2018
Type: Literature Review
Abstract

The private sector is the primary investor in health research and development (R&D) worldwide, with investment annual investment exceeding $150 billion, although only an estimated $5.9 billion is focused on diseases that primarily affect low and middle-income countries (LMICs) (West et al., 2017b). Pharmaceutical companies are the largest source of private spending on global health R&D focused on LMICs, providing $5.6 billion of the $5.9 billion in total private global health R&D per year. This report draws on 10-K forms filed by Pharmaceutical companies with the U.S. Securities and Exchange Commission (SEC) in the year 2016 to examine the evidence for five specific disincentives to private sector investment in drugs, vaccines and therapeutics for global health R&D: scientific uncertainty, weak policy environments, limited revenues and market uncertainty, high fixed costs for research and manufacturing, and imperfect markets. 10-K reports follow a standard format, including a business section and a risk section which include information on financial performance, investment options, lines of research, promising acquisitions and risk factors (scientific, market, and regulatory). As a result, these filings provide a valuable source of information for analyzing how private companies discuss risks and challenges as well as opportunities associated with global health R&D targeting LMICs.

EPAR Technical Report #345
Publication Date: 12/01/2017
Type: Literature Review
Abstract

The share of private sector funding, relative to public sector funding, for drug, vaccine, and diagnostic research & development (R&D) differs considerably across diseases. Private sector investment in overall health R&D exceeds $150 billion annually, but is largely concentrated on non-communicable chronic diseases with only an estimated $5.9 billion focused on "global health", targeting diseases that primarily affect low and middle-income countries (LMICs). We examine the evidence for five specific disincentives to private sector global health R&D investment: scientific uncertainty, weak policy environments, limited revenues and market uncertainty, high fixed and sunk costs, and downstream rents from imperfect markets. Though all five may affect estimates of net returns from an investment decision, they are worth examining separately as each calls for a different intervention or remediation to change behavior.

EPAR Technical Report #349
Publication Date: 11/30/2017
Type: Literature Review
Abstract

Donor countries and multilateral organizations may pursue multiple goals with foreign aid, including supporting low-income country development for strategic/security purposes (national security, regional political stability) and for short-and long-term economic interests (market development and access, local and regional market stability). While the literature on the effectiveness of aid in supporting progress on different indicators of country development is inconclusive, donors are interested in evidence that aid funding is not permanent but rather contributes to a process by which recipient countries develop to a point that they are economically self-sufficient. In this report, we review the literature on measures of country self-sufficiency and descriptive evidence from illustrative case studies to explore conditions associated with transitions toward self-sufficiency in certain contexts.

  

EPAR Technical Report #339
Publication Date: 09/28/2017
Type: Data Analysis
Abstract

An ongoing stream of EPAR research considers how public good characteristics of different types of research and development (R&D) and the motivations of different providers of R&D funding affect the relative advantages of alternative funding sources. For this project, we seek to summarize the key public good characteristics of R&D investment for agriculture in general and for different subsets of crops, and hypothesize how these characteristics might be expected to affect public, private, or philanthropic funders’ investment decisions. 

Code
EPAR Technical Report #341
Publication Date: 08/03/2017
Type:
Abstract
Data on public expenditures on agriculture are not systematically collected in any one database. Rather, a variety of sources collect and publish data on certain aspects of agricultural public expenditures. These sources vary in their data collection methods, their frequency of data collection, and the specific expenditures they report on. We collected data on agricultural public expenditures and conducted preliminary analyses for four countries: India (with a focus on Bihar, Odisha, and Uttar Pradesh), Ethiopia, Nigeria, and Tanzania. The data are disaggregated in a variety of ways depending on the source, but we include disaggregated data where available comparing planned or budgeted vs. actual spending, government vs. donor spending, soending by activity or funding area, and spending by commodity or value chain activity. Our goals are to facilitate further analysis of trends in agricultural public expenditures across countries and over time, and to highlight gaps and differences in data sources.
EPAR Research Brief #225
Publication Date: 10/15/2013
Type: Literature Review
Abstract

After cereals, root and tuber crops - including sweetpotato and yam (in addition to cassava and aroids), are the second most cultivated crops in tropical countries. This literature review examines the environmental constraints to, and impacts of, sweetpotato and yam production systems in Sub-Saharan Africa (SSA) and South Asia (SA). The review highlights crop-environment interactions at three stages of the sweetpotato/yam value chain: pre-production (e.g., land clearing), production (e.g., soil, water, and input use), and post-production (e.g., waste disposal, crop storage and transport). We find that sweetpotato and yam face similar environmental stressors. In particular, because sweetpotato and yam are vegetatively propagated, the most significant (and avoidable) environmental constraints to crop yields include disease and pest infection transmitted through the use of contaminated planting materials. Published estimates suggest yield gains in the range of 30–60% can be obtained through using healthy planting material. Moreover, reducing pest damage in the field can greatly increase the storage life of root and tuber crops after harvest – currently losses from rot and desiccation can claim up to 100% of stored sweetpotato and yam on smallholder farms.

EPAR Research Brief #213
Publication Date: 08/31/2013
Type: Literature Review
Abstract

 In this brief we examine the environmental constraints to, and impacts of, smallholder sorghum and millet production systems in Sub-Saharan Africa (SSA) and South Asia (SA). Millet in this paper primarily refers to pearl millet (Pennisetum glaucum), although a number of other millets of significance to smallholder production and food security are also discussed. Sorghum and millets are known for being more tolerant of major environmental stresses including drought and poor soil quality than other major cereals. But water availability is still among the greatest constraints to increased grain production, and soil fertility also significantly limits yields, especially in cases where cultivation occurs on marginal lands and where crop residues are removed for alternative uses. Ultimately sorghum and millets’ relatively higher tolerance to abiotic stresses is expected to promote an increase in global cropping area for sorghum and millets as an adaptation to climate change. Sorghum and millet exhibit relatively few of the environmental impacts commonly associated with more intensively cultivated crops such as fertilizer runoff, pesticide contamination, or water depletion, since both of these crops are overwhelmingly grown by smallholder farmers with few, if any, chemical or irrigation inputs. Nevertheless, the tendency to grow sorghum and millet on marginal and heavily sloped lands does pose some environmental risks – including soil degradation and erosion – that can be mitigated through the adoption of best practices as described in the brief. 

EPAR Research Brief #215
Publication Date: 08/31/2013
Type: Literature Review
Abstract

Maize has expanded through the 20th and into the 21st century to become the principle staple food crop produced and consumed by smallholder farm households in Sub-Saharan Africa (SSA), and maize production has also expanded in South Asia (SA) farming systems. In this brief we examine the environmental constraints to, and impacts of, smallholder maize production systems in SSA and SA, noting where findings apply to only one of these regions. We highlight crop-environment interactions at three stages of the maize value chain: pre-production (e.g., land clearing), production (e.g., fertilizer, water, and other input use), and post-production (e.g., waste disposal and crop storage). At each stage we emphasize environmental constraints on maize production (such as poor soil quality, water scarcity, or crop pests) and also environmental impacts of maize production (such as soil erosion, water depletion, or chemical contamination). We then highlight best or good practices for overcoming environmental constraints and minimizing environmental impacts in smallholder maize production systems. Evidence on environmental constraints and impacts in smallholder maize production is uneven. Many environmental concerns such as biodiversity loss are commonly demonstrated more broadly for the agroecology or farming systems in which maize is grown, rather than specifically for the maize crop. And more research is available on the environmental impacts of agrochemical-based intensive cereal farming in Asia (where high-input maize is a common component) than on the low-input subsistence-scale maize cultivation more typical of SSA. Decisive constraint and impact estimates are further complicated by the fact that many crop-environment interactions in maize and other crops are a matter of both cause and effect (e.g., poor soils decrease maize yields, while repeated maize harvests degrade soils). Fully understanding maize-environment interactions thus requires recognizing instances where shortterm adaptations to environmental constraints might be exacerbating other medium- or long-term environmental problems. Conclusions on the strength of published findings on crop-environment interactions in maize systems further depend on one’s weighting of economic versus ecological perspectives, physical science versus social science, academic versus grey literature, and quantity versus quality of methods and findings.

EPAR Research Brief #226
Publication Date: 05/02/2013
Type: Literature Review
Abstract

The following brief details the various policies surrounding donor agency salary supplementation (or top-up) to individuals employed in project countries. The goal of this research was to understand the landscape of different agency’s policies regarding salary top-ups for government experts and scientists advising on donor projects. However, information on this specific scenario was limited. The brief covers a range of scenarios in which donor agencies may pay salary top-ups to local, in-country individuals and aims to draw out a number of hypothesized advantages and disadvantages associated with the practice of donor salary supplementation.

EPAR Research Brief #208
Publication Date: 05/01/2013
Type: Literature Review
Abstract

Rice is the most important food crop of the developing world and is grown on over 155 million ha worldwide. Food security of the poor, especially in Asia, depends critically on rice availability at an affordable price. In this brief we examine the environmental constraints to, and impacts of, smallholder rice production systems in South Asia (SA) and Sub-Saharan Africa (SSA), noting where the analysis applies to only one of these regions. We highlight crop-environment interactions at three stages of the rice value chain: pre-production (e.g., land clearing), production (e.g., water and other input use), and post-production (e.g., waste disposal). At each stage we emphasize environmental constraints on production (e.g., poor soil quality, water scarcity, crop pests) and also environmental impacts of crop production (e.g., soil erosion, water depletion, pest resistance). We then highlight best or good practices for minimizing negative environmental impacts in smallholder rice production systems. Evidence on environmental issues in smallholder rice production is uneven. Far more research is available for Asian rice production systems, as compared to African rice systems. And with the possible exception of the evidence on water limits to increasing productivity, conclusions on the strength of published findings on crop-environment interactions in rice depends on one’s weighting of economic versus ecological perspectives, physical science versus social science, academic versus grey literature, and quantity versus quality of methods and findings.