Research Topics

EPAR RESEARCH BRIEF #386
Publication Date: 05/08/2019
Type: Research Brief
Abstract

In many countries in Sub-Saharan Africa and South Asia smallholder farmers are among the most vulnerable to climatic changes, and the observed shocks and stresses associated with these changes impact agricultural systems in many ways. This research brief offers findings on observed or measured changes in precipitation, temperature or both, on five biophysical pathways and systems including variable or changing growing seasons, extreme events, biotic stressors, plant species density, richness and range, impacts to streamflow, and impacts on crop yield. These findings are the result of a review of relevant documents cited in Kilroy (2015), references included in the IPCC draft Special Report on Food Security, and targeted searches from 2015 - present for South Asia and Sub-Saharan Africa. 

EPAR Technical Report #355 and EPAR Research Briefs #355A & #355B & #355C
Publication Date: 06/15/2018
Type: Literature Review
Abstract

Many low- and middle-income countries remain challenged by a financial infrastructure gap, evidenced by very low numbers of bank branches and automated teller machines (ATMs) (e.g., 2.9 branches per 100,000 people in Ethiopia versus 13.5 in India and 32.9 in the United States (U.S.) and 0.5 ATMs per 100,000 people in Ethiopia versus 19.7 in India and 173 in the U.S.) (The World Bank 2015a; 2015b). Furthermore, only an estimated 62 percent of adults globally have a banking account through a formal financial institution, leaving over 2 billion adults unbanked (Demirgüç–Kunt et al., 2015). While conventional banks have struggled to extend their networks into low-income and rural communities, digital financial services (DFS) have the potential to extend financial opportunities to these groups (Radcliffe & Voorhies, 2012). In order to utilize DFS however, users must convert physical cash to electronic money which requires access to cash-in, cash-out (CICO) networks—physical access points including bank branches but also including “branchless banking" access points such as ATMs, point-of-sale (POS) terminals, agents, and cash merchants. As mobile money and branchless banking expand, countries are developing new regulations to govern their operations (Lyman, Ivatury, & Staschen, 2006; Lyman, Pickens, & Porteous, 2008; Ivatury & Mas, 2008), including regulations targeting aspects of the different CICO interfaces. 

EPAR's work on CICO networks consists of five components. First, we summarize types of recent mobile money and branchless banking regulations related to CICO networks and review available evidence on the impacts these regulations may have on markets and consumers. In addition to this technical report we developed a short addendum (EPAR 355a) which includes a description of findings on patterns around CICO regulations over time. Another addendum (EPAR 355b) summarizes trends in exclusivity regulations including overall trends, country-specific approaches to exclusivity, and a table showing how available data on DFS adoption from FII and GSMA might relate to changes in exclusivity policies over time. A third addendum (EPAR 355c) explores trends in CICO network expansion with a focus on policies seeking to improve access among more remote or under-served populations. Lastly, we developed a database of CICO regulations, including a regulatory decision options table which outlines the key decisions that countries can make to regulate CICOs and a timeline of when specific regulations related to CICOs were introduced in eight focus countries, Bangladesh, India, Indonesia, Kenya, Nigeria, Pakistan, Tanzania, and Uganda.

EPAR Technical Report #346
Publication Date: 04/23/2018
Type: Literature Review
Abstract

The private sector is the primary investor in health research and development (R&D) worldwide, with investment annual investment exceeding $150 billion, although only an estimated $5.9 billion is focused on diseases that primarily affect low and middle-income countries (LMICs) (West et al., 2017b). Pharmaceutical companies are the largest source of private spending on global health R&D focused on LMICs, providing $5.6 billion of the $5.9 billion in total private global health R&D per year. This report draws on 10-K forms filed by Pharmaceutical companies with the U.S. Securities and Exchange Commission (SEC) in the year 2016 to examine the evidence for five specific disincentives to private sector investment in drugs, vaccines and therapeutics for global health R&D: scientific uncertainty, weak policy environments, limited revenues and market uncertainty, high fixed costs for research and manufacturing, and imperfect markets. 10-K reports follow a standard format, including a business section and a risk section which include information on financial performance, investment options, lines of research, promising acquisitions and risk factors (scientific, market, and regulatory). As a result, these filings provide a valuable source of information for analyzing how private companies discuss risks and challenges as well as opportunities associated with global health R&D targeting LMICs.

EPAR Research Brief #225
Publication Date: 10/15/2013
Type: Literature Review
Abstract

After cereals, root and tuber crops - including sweetpotato and yam (in addition to cassava and aroids), are the second most cultivated crops in tropical countries. This literature review examines the environmental constraints to, and impacts of, sweetpotato and yam production systems in Sub-Saharan Africa (SSA) and South Asia (SA). The review highlights crop-environment interactions at three stages of the sweetpotato/yam value chain: pre-production (e.g., land clearing), production (e.g., soil, water, and input use), and post-production (e.g., waste disposal, crop storage and transport). We find that sweetpotato and yam face similar environmental stressors. In particular, because sweetpotato and yam are vegetatively propagated, the most significant (and avoidable) environmental constraints to crop yields include disease and pest infection transmitted through the use of contaminated planting materials. Published estimates suggest yield gains in the range of 30–60% can be obtained through using healthy planting material. Moreover, reducing pest damage in the field can greatly increase the storage life of root and tuber crops after harvest – currently losses from rot and desiccation can claim up to 100% of stored sweetpotato and yam on smallholder farms.

EPAR Research Brief #215
Publication Date: 08/31/2013
Type: Literature Review
Abstract

Maize has expanded through the 20th and into the 21st century to become the principle staple food crop produced and consumed by smallholder farm households in Sub-Saharan Africa (SSA), and maize production has also expanded in South Asia (SA) farming systems. In this brief we examine the environmental constraints to, and impacts of, smallholder maize production systems in SSA and SA, noting where findings apply to only one of these regions. We highlight crop-environment interactions at three stages of the maize value chain: pre-production (e.g., land clearing), production (e.g., fertilizer, water, and other input use), and post-production (e.g., waste disposal and crop storage). At each stage we emphasize environmental constraints on maize production (such as poor soil quality, water scarcity, or crop pests) and also environmental impacts of maize production (such as soil erosion, water depletion, or chemical contamination). We then highlight best or good practices for overcoming environmental constraints and minimizing environmental impacts in smallholder maize production systems. Evidence on environmental constraints and impacts in smallholder maize production is uneven. Many environmental concerns such as biodiversity loss are commonly demonstrated more broadly for the agroecology or farming systems in which maize is grown, rather than specifically for the maize crop. And more research is available on the environmental impacts of agrochemical-based intensive cereal farming in Asia (where high-input maize is a common component) than on the low-input subsistence-scale maize cultivation more typical of SSA. Decisive constraint and impact estimates are further complicated by the fact that many crop-environment interactions in maize and other crops are a matter of both cause and effect (e.g., poor soils decrease maize yields, while repeated maize harvests degrade soils). Fully understanding maize-environment interactions thus requires recognizing instances where shortterm adaptations to environmental constraints might be exacerbating other medium- or long-term environmental problems. Conclusions on the strength of published findings on crop-environment interactions in maize systems further depend on one’s weighting of economic versus ecological perspectives, physical science versus social science, academic versus grey literature, and quantity versus quality of methods and findings.

EPAR Research Brief #213
Publication Date: 08/31/2013
Type: Literature Review
Abstract

 In this brief we examine the environmental constraints to, and impacts of, smallholder sorghum and millet production systems in Sub-Saharan Africa (SSA) and South Asia (SA). Millet in this paper primarily refers to pearl millet (Pennisetum glaucum), although a number of other millets of significance to smallholder production and food security are also discussed. Sorghum and millets are known for being more tolerant of major environmental stresses including drought and poor soil quality than other major cereals. But water availability is still among the greatest constraints to increased grain production, and soil fertility also significantly limits yields, especially in cases where cultivation occurs on marginal lands and where crop residues are removed for alternative uses. Ultimately sorghum and millets’ relatively higher tolerance to abiotic stresses is expected to promote an increase in global cropping area for sorghum and millets as an adaptation to climate change. Sorghum and millet exhibit relatively few of the environmental impacts commonly associated with more intensively cultivated crops such as fertilizer runoff, pesticide contamination, or water depletion, since both of these crops are overwhelmingly grown by smallholder farmers with few, if any, chemical or irrigation inputs. Nevertheless, the tendency to grow sorghum and millet on marginal and heavily sloped lands does pose some environmental risks – including soil degradation and erosion – that can be mitigated through the adoption of best practices as described in the brief. 

EPAR Technical Report #239
Publication Date: 08/20/2013
Type: Literature Review
Abstract

This research brief provides an overview of the banana and plantain value chains in West Africa. Because of the greater production and consumption of plantains than bananas in the region, the brief focuses on plantains and concentrates on the major plantain-producing countries of Ghana, Cameroon, and Nigeria. The brief is divided into the following sections: Key Statistics (trends in banana and plantain production, consumption, and trade since 1990), Production, Post-Harvest Practices and Challenges, Marketing Systems, and Importance (including household consumption and nutrition). West Africa is one of the major plantain-producing regions of the world, accounting for approximately 32% of worldwide production. Plantains are an important staple crop in the region with a high nutritional content, variety of preparation methods, and a production cycle that is less labor-intensive than many other crops. In addition to plantains, bananas are also grown in West Africa, but they account for only 2.3% of worldwide production. Bananas are more likely than plantains to be grown for export rather than local consumption. Major constraints to banana and plantain production include pests and disease, short shelf life, and damage during transportation.

EPAR Research Brief #208
Publication Date: 05/01/2013
Type: Literature Review
Abstract

Rice is the most important food crop of the developing world and is grown on over 155 million ha worldwide. Food security of the poor, especially in Asia, depends critically on rice availability at an affordable price. In this brief we examine the environmental constraints to, and impacts of, smallholder rice production systems in South Asia (SA) and Sub-Saharan Africa (SSA), noting where the analysis applies to only one of these regions. We highlight crop-environment interactions at three stages of the rice value chain: pre-production (e.g., land clearing), production (e.g., water and other input use), and post-production (e.g., waste disposal). At each stage we emphasize environmental constraints on production (e.g., poor soil quality, water scarcity, crop pests) and also environmental impacts of crop production (e.g., soil erosion, water depletion, pest resistance). We then highlight best or good practices for minimizing negative environmental impacts in smallholder rice production systems. Evidence on environmental issues in smallholder rice production is uneven. Far more research is available for Asian rice production systems, as compared to African rice systems. And with the possible exception of the evidence on water limits to increasing productivity, conclusions on the strength of published findings on crop-environment interactions in rice depends on one’s weighting of economic versus ecological perspectives, physical science versus social science, academic versus grey literature, and quantity versus quality of methods and findings.

EPAR Research Brief #212
Publication Date: 03/05/2013
Type: Literature Review
Abstract

This literature review examines the environmental constraints to, and impacts of, wheat production systems in South Asia (SA) and Sub-Saharan Africa (SSA). The review highlights crop-environment interactions at three stages of the wheat value chain: pre-production (e.g., land availability), production (e.g., heat, water, and soil), and post-production (e.g. storage, crop residues, and transport). At each stage we emphasize environmental constraints on production (e.g., poor soil quality, water scarcity, crop pests, etc.) and also environmental impacts of crop production (e.g., soil degradation, water depletion and pollution, greenhouse gas emissions, etc.). We then highlight published best practices for overcoming environmental constraints and minimizing environmental impacts in wheat production systems. We find that wheat is a significant crop that will need to increase production to meet increasing demand. Most land suitable for wheat production is already under cultivation. Improved production methods are needed to address the demand and avert environmental impacts of producing wheat.  It should not be assumed that improved varieties alone will be able to realistically address growing demands for wheat. Improved variety seeds should be combined with best practices of improved crop management techniques: optimal planting time, zero tillage, fertilizer management, intercropping, crop residue incorporation, and improved storage techniques.

EPAR Technical Report #218
Publication Date: 01/13/2013
Type: Literature Review
Abstract

This desk study reports on the small-scale machinery sector in China and a selection of SSA countries: Ethiopia, Tanzania, Nigeria, Burkina Faso, and Uganda. The report is organized into three sections. Section 1 discusses the current state of small-scale agricultural machinery in SSA for crop and livestock production in each of the SSA countries identified. It also seeks to identify major areas of need in terms of agricultural mechanization and major constraints to agricultural machinery adoption, dissemination and maintenance. Section 2 focuses on the agricultural machinery sector in China and Chinese Africa relationships in agricultural development. It also identifies the major government players in the Chinese agricultural machinery sector. Section 3 is a “directory” of small-scale agricultural machinery manufactured in China with potential relevance for SSA smallholder farmers. We divide machines by function (e.g. threshing) although many Chinese machines are multi-function and can serve multiple purposes. We also note applicable crops, if listed by the manufacturers, and technical specifications as available.