Research Topics

EPAR Technical Report #326
Publication Date: 06/01/2017
Type: Data Analysis
Abstract

By examining how farmers respond to changes in crop yield, we provide evidence on how farmers are likely to respond to a yield-enhancing intervention that targets a single staple crop such as maize. Two alternate hypotheses we examine are: as yields increase, do farmers maintain output levels but change the output mix to switch into other crops or activities, or do they hold cultivated area constant to increase their total production quantity and therefore their own consumption or marketing of the crop? This exploratory data analysis using three waves of panel data from Tanzania is part of a long-term project examining the pathways between staple crop yield (a proxy for agricultural productivity) and poverty reduction in Sub-Saharan Africa. 

Code
EPAR Technical Report #347
Publication Date: 03/17/2017
Type: Literature Review
Abstract

A growing body of evidence suggests that empowering women may lead to economic benefits (The World Bank, 2011; Duflo, 2012; Kabeer & Natali, 2013). Little work, however, focuses specifically on the potential impacts of women’s empowerment in agricultural settings. Through a comprehensive review of literature this report considers how prioritizing women’s empowerment in agriculture might lead to economic benefits. With an intentionally narrow focus on economic empowerment, we draw on the Women’s Empowerment in Agriculture Index (WEAI)’s indicators of women’s empowerment in agriculture to consider the potential economic rewards to increasing women’s control over agricultural productive resources (including their own time and labor), over agricultural production decisions, and over agricultural income. While we recognize that there may be quantifiable benefits of improving women’s empowerment in and of itself, we focus on potential longer-term economic benefits of improvements in these empowerment measures.

EPAR Technical Report #240
Publication Date: 07/28/2016
Type: Data Analysis
Abstract

There is a wide gap between realized and potential yields for many crops in Sub-Saharan Africa (SSA). Experts identify poor soil quality as a primary constraint to increased agricultural productivity. Therefore, increasing agricultural productivity by improving soil quality is seen as a viable strategy to enhance food security. Yet adoption rates of programs focused on improving soil quality have generally been lower than expected. We explore a seldom considered factor that may limit farmers’ demand for improved soil quality, namely, whether farmers’ self-assessments of their soil quality match soil scientists’ assessments. In this paper, using Tanzania National Panel Survey (TZNPS) data, part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA), we compare farmers’ own assessments of soil quality with scientific measurements of soil quality from the Harmonized World Soil Database (HWSD). We find a considerable “mismatch” and most notably, that 11.5 percent of survey households that reported having “good” soil quality are measured by scientific standards to have severely constrained nutrient availability. Mismatches between scientific measurements and farmer assessments of soil quality may highlight a potential barrier for programs seeking to encourage farmers to adopt soil quality improvement activities. 

EPAR Technical Report #331
Publication Date: 06/20/2016
Type: Data Analysis
Abstract

Labor is one of the most productive assets for many rural households in developing countries. Despite the importance of labor—and time use more generally—little research has empirically examined the quality of time-use data in household surveys. Many household surveys rely on respondent recall, the reliability of which may decrease as recall length increases. In addition, respondents often report on time allocation for the entire household, which they may not know or recall as clearly as their own time allocation. Finally, simultaneous activities such as tending children while preparing dinner, may lead to the systematic underestimation of certain activities, particularly those that tend to be performed by women. This paper examines whether the identity of the survey respondent affects estimates of time allocation within the household. Drawing on the Ugandan LSMS-ISA household survey, we find that individuals responding for themselves report higher levels of time use over the previous week than when responding for other household members. Moreover, male respondents tend to underreport time allocation for females over the age of 15 as compared to female respondents, especially time spent on domestic activities. In addition, an analysis of the effects of two economics shocks—having a baby and floods or droughts—suggests that the identity of the respondent can affect substantive conclusions about the effects of shocks on household time use.

 

EPAR Technical Report #261
Publication Date: 06/14/2016
Type: Data Analysis
Abstract

Mobile technology is associated with a variety of positive development and social outcomes, and as a result reaching the “final frontier” of uncovered populations is an important policy issue. We use proprietary 2012 data on mobile coverage from Collins Bartholomew to estimate the proportion of the population living in areas without mobile coverage globally and in selected regions and countries, and use spatial analysis to identify where these populations are concentrated. We then compare our coverage estimates to data from previous years and estimates from the most recent literature to provide a picture of recent trends in coverage expansion, considering separately the trends for coverage of urban and rural populations. We find that mobile coverage expansion rates are slowing, as easier to reach urban populations in developing countries are now almost entirely covered and the remaining uncovered populations are more dispersed in rural areas and therefore more difficult and costly to reach. This analysis of mobile coverage trends was the focus of an initial report on mobile coverage estimates. In a follow-up paper prepared for presentation at the 2016 APPAM International Conference, we investigate the assumption that levels of mobile network coverage are related to the degree of market liberalization at the country level.

EPAR Technical Report #303
Publication Date: 08/10/2015
Type: Data Analysis
Abstract

Common estimates of agricultural productivity rely upon crude measures of crop yield, typically defined as the weight harvested of a crop divided by the area harvested. But this common yield measure poorly reflects performance among farm systems combining multiple crops in one area (e.g., intercropping), and also ignores the possibility that farmers might lose crop area between planting and harvest (e.g., partial crop failure). Drawing on detailed plot-level data from Tanzania’s National Panel Survey, our research contrasts measures of smallholder productivity using production per hectare harvested and production per hectare planted.

An initial analysis (Research Brief - Rice Productivity Measurement) looking at rice production finds that yield by area planted differs significantly from yield by area harvested, particularly for smaller farms and female-headed households. OLS regression further reveals different demographic and management-related drivers of variability in yield gains – and thus different implications for policy and development interventions – depending on the yield measurement used. Findings suggest a need to better specify “yield” to more effectively guide agricultural development efforts.

 

EPAR Technical Report #245
Publication Date: 04/10/2015
Type: Data Analysis
Abstract

A farmer’s decision of how much land to dedicate to each crop reflects their farming options at the extensive and intensive margins. The extensive margin represents the total amount of agricultural land area that a farmer has available in a given year (referred to interchangeably as ‘farm size’ or ‘agricultural land’). A farmer increases land use on the extensive margin by planting on new agricultural land. The intensive margin represents area planted of crops as a proportion of total farm size. A farmer increases the intensive margin by increasing output within a fixed area. This analysis examines cropping patterns for households in Tanzania between 2008 and 2010 using data from the Tanzania National Panel Survey (TZNPS).  This brief describes changes in farm size, total area planted, and area planted of select annual crops to highlight the dynamic nature of farmer’s cropping choices for a sample population of 2,246 agricultural households that reported having any agricultural land in 2008 or 2010. Throughout the brief, we present summary statistics at the national level and compare them with household-level data to show how results vary depending on how the sub-population is defined and how average measures can mask household level changes. We analyze these questions in the context of smallholders (defined as households with total agricultural land area as less than two hectares) and farming systems.  

EPAR Presentation #281
Publication Date: 08/12/2014
Type: Data Analysis
Abstract

This research project examines the traits of Tanzanian farmers living in five different farming system-based sub-regions: the Northern Highlands, Sukumaland, Central Maize, Coastal Cassava, and Zanzibar. We conducted quantitative analysis on data from the Tanzania National Panel Survey (TNPS). We complimented this analysis with qualitative data from fieldwork conducted in the summer of 2011 and September 2013 to present a quantitatively and qualitatively informed profile of the “typical” agricultural household’s land use patterns, demographic dynamics, and key issues or production constraints in each sub-region.

EPAR Presentation #280
Publication Date: 08/12/2014
Type: Data Analysis
Abstract

This poster presentation summarizes research on changes in crop planting decisions on the extensive and intensive margin in Tanzania, with regards to changes in agricultural land that a farmer has available and area planted in the context of smallholders and farming systems. We use household survey data from the Tanzania National Panel Survey (TNPS), part of the World Bank’s Living Standards Measurement Study–Integrated Surveys on Agriculture (LSMS – ISA) to test how much the agricultural land available to households changes, how much farmers change the proportion of land decidated to growing priority crops, and how crop area changes vary with changes in landholding. We find that almost half of households had a change of agricultural land area of at least half a hectare from 2008-2010. Smallholder farmers on average decreased the amount of available land between 2008 and 2010, while non-smallholder farmers increased agricultural land area during that time period, but that smallholder households planted a greater proportion of their agricultural land than nonsmallholders. Eighty percent of households changed crop proportions from 2008 to 2010, yet aggregate level indicators mask household level changes.

EPAR Research Brief #242
Publication Date: 01/08/2014
Type: Data Analysis
Abstract

The purpose of this analysis is to provide a measure of marketable surplus of maize in Tanzania. We proxy marketable surplus with national-level estimates of total maize sold, presumably the surplus for maize producing and consuming households. We also provide national level estimates of total maize produced and estimate “average prices” for Tanzania which allows this quantity to be expressed as an estimate of the value of marketable surplus. The analysis uses the Tanzanian National Panel Survey (TNPS) LSMS – ISA which is a nationally representative panel survey, for the years 2008/2009 and 2010/2011. A spreadsheet provides our estimates for different subsets of the sample and using different approaches to data cleaning and weighting. The total number of households for Tanzania was estimated with linear extrapolation based on the Tanzanian National Bureau of Statistics for the years 2002 and 2012. The weighted proportions of maize-producing and maize-selling households were multiplied to the national estimate of total households. This estimate of total Tanzanian maize-selling and maize-producing households was then multiplied by the average amount sold and by the average amount produced respectively to obtain national level estimates of total maize sold and total maize produced in 2009 and 2011.