Research Topics

EPAR TECHNICAL REPORT #362
Publication Date: 01/16/2019
Type: Data Analysis
Abstract

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:

Sub-Populations

  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

Characteristics
In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Technical Report #335
Publication Date: 11/21/2017
Type: Data Analysis
Abstract
EPAR has developed Stata do.files for the construction of a set of agricultural development indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). We are sharing our code and documenting our construction decisions both to facilitate analyses of these rich datasets and to make estimates of relevant indicators available to a broader audience of potential users. 
Code, Code, Code, Code
EPAR Technical Report #329
Publication Date: 05/31/2017
Type: Literature Review
Abstract

This research considers how public good characteristics of different types of research and development (R&D) and the motivations of different providers of R&D funding affect the relative advantages of alternative funding sources. We summarize the public good characteristics of R&D for agriculture in general and for commodity and subsistence crops in particular, as well as R&D for health in general and for neglected diseases in particular, with a focus on Sub-Saharan Africa and South Asia. Finally, we present rationales for which funders are predicted to fund which R&D types based on these funder and R&D characteristics. We then compile available statistics on funding for agricultural and health R&D from private, public and philanthropic sources, and compare trends in funding from these sources against expectations. We find private agricultural R&D spending focuses on commodity crops (as expected). However contrary to expectations we find public and philanthropic spending also goes largely towards these same crops rather than staples not targeted by private funds. For health R&D private funders similarly concentrate on diseases with higher potential financial returns. However unlike in agricultural R&D, in health R&D we observe some specialization across funders – especially for neglected diseases R&D - consistent with funders’ expected relative advantages.

EPAR Research Brief #167
Publication Date: 10/07/2011
Type: Data Analysis
Abstract

This is "Section B" of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present our analyses of household characteristics by gender and by administrative zone, considering landholding size, number of crops grown, yields, livestock, input use, and food consumption.

EPAR Technical Report #165
Publication Date: 10/05/2011
Type: Data Analysis
Abstract

This is "Section G" of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present our analyses of data related to consumption of priority foods, total value of consumption, levels of food consumption and production, including analyses by zone in Tanzania. We find, for example, that the mean total value of household consumption was higher for agricultural households (US$27.28) compared to non-agricultural households (US$26.59), but the mean per capita value of household consumption was higher for non-agricultural households (US$7.32) compared to agricultural households (US$5.24). The mean per capita value of weekly consumption for the Southern zone was only US$5.34, compared to the highest mean per capita value of US$6.63 in the Eastern zone. The Central zone still had the lowest per capita value of consumption at US$4.40.

EPAR Technical Report #154
Publication Date: 09/30/2011
Type: Data Analysis
Abstract

This is the introductory section of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present an overview of report sections, as well as an executive summary of findings on crops and livestock, constraints to productivity, and productivity and nutrition outcomes.

EPAR Research Brief #79
Publication Date: 07/29/2009
Type: Literature Review
Abstract

The Government of Kenya (GoK) has historically encouraged its farmers to use fertilizer by financing infrastructure and supporting fertilizer markets.  From 1974 to 1984, the GoK provided a fertilizer importation monopoly to one firm, the Kenya Farmers Association.  However, the GoK saw that this monopoly impeded fertilizer market development by prohibiting competing firms from entering the market and, in the latter half of the 1980s, encouraged other firms to enter the highly regulated fertilizer market. This report examines the state of fertilizer use in Kenya by reviewing and summarizing literature on recent fertilizer price increases, Kenya’s fertilizer usage trends and approaches, market forces, and the impact of government and non-government programs. We find that most studies of Kenya’s fertilizer market find it to be well functioning and generally competitive, and conclude that market reform has stimulated fertilizer use mainly by improving farmers’ access to the input through the expansion of private retail networks. Overall fertilizer consumption in Kenya has increased steadily since 1980, and fertilizer use among smallholders is among the highest in Sub-Saharan Africa. Yet fertilizer consumption is still limited, especially on cereal crops, and in areas where agroecological conditions create greater risks and lower returns to fertilizer use.