Research Topics

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR Technical Report #335
Publication Date: 11/21/2017
Type: Data Analysis
Abstract
EPAR has developed Stata do.files for the construction of a set of agricultural development indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). We are sharing our code and documenting our construction decisions both to facilitate analyses of these rich datasets and to make estimates of relevant indicators available to a broader audience of potential users. 
Code, Code, Code, Code
EPAR Technical Report #341
Publication Date: 08/03/2017
Type:
Abstract
Data on public expenditures on agriculture are not systematically collected in any one database. Rather, a variety of sources collect and publish data on certain aspects of agricultural public expenditures. These sources vary in their data collection methods, their frequency of data collection, and the specific expenditures they report on. We collected data on agricultural public expenditures and conducted preliminary analyses for four countries: India (with a focus on Bihar, Odisha, and Uttar Pradesh), Ethiopia, Nigeria, and Tanzania. The data are disaggregated in a variety of ways depending on the source, but we include disaggregated data where available comparing planned or budgeted vs. actual spending, government vs. donor spending, soending by activity or funding area, and spending by commodity or value chain activity. Our goals are to facilitate further analysis of trends in agricultural public expenditures across countries and over time, and to highlight gaps and differences in data sources.