Research Topics

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR TECHNICAL REPORT #362
Publication Date: 01/16/2019
Type: Data Analysis
Abstract

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:

Sub-Populations

  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

Characteristics
In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Technical Report #354
Publication Date: 11/29/2018
Type: Research Brief
Abstract

Precise agricultural statistics are necessary to track productivity and design sound agricultural policies. Yet, in settings where intercropping is prevalent, even crop yield can be challenging to measure. In a systematic survey of the literature on crop yield in low-income settings, we find that scholars specify how they estimate the yield denominator in under 10% of cases. Using household survey data from Tanzania, we consider four alternative methods of allocating land area on plots that contain multiple crops, and explore the implications of this measurement decision for analyses of maize and rice yield. We find that 64% of cultivated plots contain more than one crop, and average yield estimates vary with different methods of calculating area planted. This pattern is more pronounced for maize, which is more likely than rice to share a plot with other crops. The choice among area methods influences which of these two staple crops is found to be more calorie-productive per ha, as well as the extent to which fertilizer is expected to be profitable for maize production. Given that construction decisions can influence the results of analysis, we conclude that the literature would benefit from greater clarity regarding how yield is measured across studies.

EPAR Technical Report #355 and EPAR Research Briefs #355A & #355B & #355C
Publication Date: 06/15/2018
Type: Literature Review
Abstract

Many low- and middle-income countries remain challenged by a financial infrastructure gap, evidenced by very low numbers of bank branches and automated teller machines (ATMs) (e.g., 2.9 branches per 100,000 people in Ethiopia versus 13.5 in India and 32.9 in the United States (U.S.) and 0.5 ATMs per 100,000 people in Ethiopia versus 19.7 in India and 173 in the U.S.) (The World Bank 2015a; 2015b). Furthermore, only an estimated 62 percent of adults globally have a banking account through a formal financial institution, leaving over 2 billion adults unbanked (Demirgüç–Kunt et al., 2015). While conventional banks have struggled to extend their networks into low-income and rural communities, digital financial services (DFS) have the potential to extend financial opportunities to these groups (Radcliffe & Voorhies, 2012). In order to utilize DFS however, users must convert physical cash to electronic money which requires access to cash-in, cash-out (CICO) networks—physical access points including bank branches but also including “branchless banking" access points such as ATMs, point-of-sale (POS) terminals, agents, and cash merchants. As mobile money and branchless banking expand, countries are developing new regulations to govern their operations (Lyman, Ivatury, & Staschen, 2006; Lyman, Pickens, & Porteous, 2008; Ivatury & Mas, 2008), including regulations targeting aspects of the different CICO interfaces. 

EPAR's work on CICO networks consists of five components. First, we summarize types of recent mobile money and branchless banking regulations related to CICO networks and review available evidence on the impacts these regulations may have on markets and consumers. In addition to this technical report we developed a short addendum (EPAR 355a) which includes a description of findings on patterns around CICO regulations over time. Another addendum (EPAR 355b) summarizes trends in exclusivity regulations including overall trends, country-specific approaches to exclusivity, and a table showing how available data on DFS adoption from FII and GSMA might relate to changes in exclusivity policies over time. A third addendum (EPAR 355c) explores trends in CICO network expansion with a focus on policies seeking to improve access among more remote or under-served populations. Lastly, we developed a database of CICO regulations, including a regulatory decision options table which outlines the key decisions that countries can make to regulate CICOs and a timeline of when specific regulations related to CICOs were introduced in eight focus countries, Bangladesh, India, Indonesia, Kenya, Nigeria, Pakistan, Tanzania, and Uganda.

EPAR Technical Report #346
Publication Date: 04/23/2018
Type: Literature Review
Abstract

The private sector is the primary investor in health research and development (R&D) worldwide, with investment annual investment exceeding $150 billion, although only an estimated $5.9 billion is focused on diseases that primarily affect low and middle-income countries (LMICs) (West et al., 2017b). Pharmaceutical companies are the largest source of private spending on global health R&D focused on LMICs, providing $5.6 billion of the $5.9 billion in total private global health R&D per year. This report draws on 10-K forms filed by Pharmaceutical companies with the U.S. Securities and Exchange Commission (SEC) in the year 2016 to examine the evidence for five specific disincentives to private sector investment in drugs, vaccines and therapeutics for global health R&D: scientific uncertainty, weak policy environments, limited revenues and market uncertainty, high fixed costs for research and manufacturing, and imperfect markets. 10-K reports follow a standard format, including a business section and a risk section which include information on financial performance, investment options, lines of research, promising acquisitions and risk factors (scientific, market, and regulatory). As a result, these filings provide a valuable source of information for analyzing how private companies discuss risks and challenges as well as opportunities associated with global health R&D targeting LMICs.

EPAR Research Brief #360
Publication Date: 02/05/2018
Type: Research Brief
Abstract

In this brief, we report on measures of economic growth, poverty and agricultural activity in Ethiopia. For each category of measure, we first describe different measurement approaches and present available time series data on selected indicators. We then use data from the sources listed below to discuss associations within and between these categories between 1994 and 2017. 

EPAR Technical Report #211
Publication Date: 12/14/2012
Type: Literature Review
Abstract

This report provides a general overview of the sweet potato value chain in Tanzania. The first section describes trends in sweet potato production and consumption since 1990. The second section describes the uses and importance of sweet potatoes in Tanzania. The final section outlines current practices and constraints in production, post-production, and marketing. Tanzania ranks fifth in the world in quantity of sweet potatoes produced. Production and consumption of sweet potatoes have been relatively constant over the past 10 years, although both production and consumption in this period have been high in comparison to earlier decades. We find that sweet potato yields increased in the early 2000s, but have stagnated since, and are far short of potential yields. Sweet potato consumption is almost entirely domestic and plays an important role in nutrition and food security for smallholder farmers. Sweet potato production faces a variety of constraints, including pests and disease, short shelf life, lack of planting materials, damage during handling, and lack of market access.

EPAR Technical Report #223
Publication Date: 12/10/2012
Type: Literature Review
Abstract

Cassava is a tuber crop originating in South America and grown in tropical and subtropical areas throughout the world. Cassava use varies significantly by region. In Africa, cassava is primarily grown for food. In Asia, production is typically for industrial purposes, including ethanol, while in Latin America and the Caribbean it is commonly used in animal feed. Both roots and leaves are consumed, though most information on production focuses on roots. There are bitter and sweet varieties; bitter cassava has a high cyanide content and must be processed prior to consumption, while sweet varieties can be eaten directly. This report presents information about current production, constraints, and future potential of cassava. We discuss cassava’s importance in Africa, current worldwide production, projections for supply and demand, production constraints, and current policies affecting cassava production and trade. We include global information but focus on Africa, particularly Nigeria, Ghana, Uganda, and Tanzania.

EPAR Technical Report #201
Publication Date: 09/12/2012
Type: Data Analysis
Abstract

This brief explores how two datasets – The Tanzania National Panel Survey (TZNPS) and the TNS-Research International Farmer Focus (FF) – predict the determinants of inorganic fertilizer use among smallholder farmers in Tanzania by using regression analysis. The (TZNPS) was implemented by the Tanzania National Bureau of Statistics, with support from the World Bank Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA) team and includes extensive information on crop productivity and input use. The FF survey was funded by the Bill and Melinda Gates Foundation and implemented by TNS Research International and focuses on the on the behaviors and attitudes of smallholder farmers in Tanzania. The two datasets produce relatively comparable results for the primary predictors of inorganic fertilizer use: agricultural extension and whether or not a household grows cash crops. However, other factors influencing input use produce results that vary in magnitude and direction of the effect across the two datasets. Distinct survey instrument designs make it difficult to test the robustness of the models on input use other than inorganic fertilizer. This brief uses data inorganic fertilizer use, rather than adoption per se. The TZNPS did not ask households how recently they began using a certain product and although the FF survey asked respondents how many new inputs were tried in the past four planting seasons, they did not ask specifically about inorganic fertilizer.

EPAR Technical Report #199
Publication Date: 07/27/2012
Type: Literature Review
Abstract

Over the past 20 years, global wheat production and consumption have increased significantly. Production has increased 28%, or about 1.3% annually, and consumption has increased about 24%, or 1.1% annually. A small number of countries consistently account for over 90% of the export market, but the import market is more diversified and involves many more countries. Wheat is primarily used for food, seed, and industry; only 20% of wheat production is used for animal feed. This brief provides a global overview of the wheat value chain, but with specific attention to three focus countries: Ethiopia, India (specifically the Bihar region), and Bangladesh. While these three countries currently have a limited impact in the global wheat market, projections of wheat production and demand suggest that over the next 20 years demand in Bangladesh and Ethiopia will increasingly exceed supply, while India will become a net importer by 2030.