Research Topics

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR Technical Report #261
Publication Date: 06/14/2016
Type: Data Analysis
Abstract

Mobile technology is associated with a variety of positive development and social outcomes, and as a result reaching the “final frontier” of uncovered populations is an important policy issue. We use proprietary 2012 data on mobile coverage from Collins Bartholomew to estimate the proportion of the population living in areas without mobile coverage globally and in selected regions and countries, and use spatial analysis to identify where these populations are concentrated. We then compare our coverage estimates to data from previous years and estimates from the most recent literature to provide a picture of recent trends in coverage expansion, considering separately the trends for coverage of urban and rural populations. We find that mobile coverage expansion rates are slowing, as easier to reach urban populations in developing countries are now almost entirely covered and the remaining uncovered populations are more dispersed in rural areas and therefore more difficult and costly to reach. This analysis of mobile coverage trends was the focus of an initial report on mobile coverage estimates. In a follow-up paper prepared for presentation at the 2016 APPAM International Conference, we investigate the assumption that levels of mobile network coverage are related to the degree of market liberalization at the country level.