Research Topics

EPAR Technical Report #310
Publication Date: 11/20/2015
Type: Literature Review
Abstract

Cereal yield variability is influenced by initial conditions such as suitability of the farming system for cereal cultivation, current production quantities and yields, and zone-specific potential yields limited by water availability. However, exogenous factors such as national policies, climate, and international market conditions also impact farm-level yields directly or provide incentives or disincentives for farmers to intensify production. We conduct a selective literature review of policy-related drivers of maize yields in Ethiopia, Kenya, Malawi, Rwanda, Tanzania, and Uganda and pair the findings with FAOSTAT data on yield and productivity. This report presents our cumulative findings along with contextual evidence of the hypothesized drivers behind maize yield trends over the past 20 years for the focus countries.

EPAR Technical Report #303
Publication Date: 08/10/2015
Type: Data Analysis
Abstract

Common estimates of agricultural productivity rely upon crude measures of crop yield, typically defined as the weight harvested of a crop divided by the area harvested. But this common yield measure poorly reflects performance among farm systems combining multiple crops in one area (e.g., intercropping), and also ignores the possibility that farmers might lose crop area between planting and harvest (e.g., partial crop failure). Drawing on detailed plot-level data from Tanzania’s National Panel Survey, our research contrasts measures of smallholder productivity using production per hectare harvested and production per hectare planted.

An initial analysis (Research Brief - Rice Productivity Measurement) looking at rice production finds that yield by area planted differs significantly from yield by area harvested, particularly for smaller farms and female-headed households. OLS regression further reveals different demographic and management-related drivers of variability in yield gains – and thus different implications for policy and development interventions – depending on the yield measurement used. Findings suggest a need to better specify “yield” to more effectively guide agricultural development efforts.

 

EPAR Technical Report #245
Publication Date: 04/10/2015
Type: Data Analysis
Abstract

A farmer’s decision of how much land to dedicate to each crop reflects their farming options at the extensive and intensive margins. The extensive margin represents the total amount of agricultural land area that a farmer has available in a given year (referred to interchangeably as ‘farm size’ or ‘agricultural land’). A farmer increases land use on the extensive margin by planting on new agricultural land. The intensive margin represents area planted of crops as a proportion of total farm size. A farmer increases the intensive margin by increasing output within a fixed area. This analysis examines cropping patterns for households in Tanzania between 2008 and 2010 using data from the Tanzania National Panel Survey (TZNPS).  This brief describes changes in farm size, total area planted, and area planted of select annual crops to highlight the dynamic nature of farmer’s cropping choices for a sample population of 2,246 agricultural households that reported having any agricultural land in 2008 or 2010. Throughout the brief, we present summary statistics at the national level and compare them with household-level data to show how results vary depending on how the sub-population is defined and how average measures can mask household level changes. We analyze these questions in the context of smallholders (defined as households with total agricultural land area as less than two hectares) and farming systems.  

EPAR Research Brief #242
Publication Date: 01/08/2014
Type: Data Analysis
Abstract

The purpose of this analysis is to provide a measure of marketable surplus of maize in Tanzania. We proxy marketable surplus with national-level estimates of total maize sold, presumably the surplus for maize producing and consuming households. We also provide national level estimates of total maize produced and estimate “average prices” for Tanzania which allows this quantity to be expressed as an estimate of the value of marketable surplus. The analysis uses the Tanzanian National Panel Survey (TNPS) LSMS – ISA which is a nationally representative panel survey, for the years 2008/2009 and 2010/2011. A spreadsheet provides our estimates for different subsets of the sample and using different approaches to data cleaning and weighting. The total number of households for Tanzania was estimated with linear extrapolation based on the Tanzanian National Bureau of Statistics for the years 2002 and 2012. The weighted proportions of maize-producing and maize-selling households were multiplied to the national estimate of total households. This estimate of total Tanzanian maize-selling and maize-producing households was then multiplied by the average amount sold and by the average amount produced respectively to obtain national level estimates of total maize sold and total maize produced in 2009 and 2011.

EPAR Technical Report #201
Publication Date: 09/12/2012
Type: Data Analysis
Abstract

This brief explores how two datasets – The Tanzania National Panel Survey (TZNPS) and the TNS-Research International Farmer Focus (FF) – predict the determinants of inorganic fertilizer use among smallholder farmers in Tanzania by using regression analysis. The (TZNPS) was implemented by the Tanzania National Bureau of Statistics, with support from the World Bank Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA) team and includes extensive information on crop productivity and input use. The FF survey was funded by the Bill and Melinda Gates Foundation and implemented by TNS Research International and focuses on the on the behaviors and attitudes of smallholder farmers in Tanzania. The two datasets produce relatively comparable results for the primary predictors of inorganic fertilizer use: agricultural extension and whether or not a household grows cash crops. However, other factors influencing input use produce results that vary in magnitude and direction of the effect across the two datasets. Distinct survey instrument designs make it difficult to test the robustness of the models on input use other than inorganic fertilizer. This brief uses data inorganic fertilizer use, rather than adoption per se. The TZNPS did not ask households how recently they began using a certain product and although the FF survey asked respondents how many new inputs were tried in the past four planting seasons, they did not ask specifically about inorganic fertilizer.

EPAR Technical Report #184
Publication Date: 07/11/2012
Type:
Abstract

This brief provides an overview of the national and zonal characteristics of agricultural production in Tanzania using the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). More detailed information and analysis is available in the separate EPAR Tanzania LSMS-ISA Reference Report, Sections A-G.

EPAR Research Brief #187
Publication Date: 07/11/2012
Type: Data Analysis
Abstract

This brief present our analysis of maize cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that Maize was the most commonly grown crop in Tanzania – cultivated by 83% of farming households. Eighty-two percent of agricultural households reported consuming maize flour during the week prior to being surveyed. About half of those households grew nearly all of the maize they consumed, making maize production an integral part of the farming household diet. A separate appendix includes details on our analyses.

EPAR Research Brief #188
Publication Date: 07/11/2012
Type: Data Analysis
Abstract

This brief presents our analysis of rice paddy cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that Paddy was the sixth most commonly cultivated priority crop. Nationally, paddy was cultivated by 17% of farming households, with male- and female-headed households cultivating paddy at a similar rate.2 Cultivation rates varied widely across zones, ranging from 51% of households in Zanzibar to only 5% in the Northern Zone. A separate appendix includes additional detail on our analyses.

EPAR Research Brief #189
Publication Date: 04/09/2012
Type: Data Analysis
Abstract

This brief presents our analysis of legume cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that Tanzanian farmers reported growing eight different varieties of food legumes: beans, groundnuts, cowpeas, mung beans, chickpeas, bambara nuts, field peas, soya beans, and pigeon peas. Fifty-seven percent of households in Tanzania grew at least one of these crops during the long and/or short rainy seasons.  A separate appendix includes details on our analyses.

EPAR Research Brief #190
Publication Date: 03/30/2012
Type: Data Analysis
Abstract

This brief presents a comparative analysis of men and women and of male- and female-headed households in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We compare farm activity, productivity, input use, and sales as well as labor allocations by gender of the respondent and of the household head. In households designated “female-headed” a woman was the decision maker in the household, took part in the economy, control and welfare of the household, and was recognized by others in the household as the head. For questions regarding household labor (both non-farm and farm), the gender of the individual laborer is recorded, and we use this to illustrate the responsibilities of male and female household members. An appendix provides the details for our analyses.