Research Topics

EPAR Technical Report #240
Publication Date: 07/28/2016
Type: Data Analysis
Abstract

There is a wide gap between realized and potential yields for many crops in Sub-Saharan Africa (SSA). Experts identify poor soil quality as a primary constraint to increased agricultural productivity. Therefore, increasing agricultural productivity by improving soil quality is seen as a viable strategy to enhance food security. Yet adoption rates of programs focused on improving soil quality have generally been lower than expected. We explore a seldom considered factor that may limit farmers’ demand for improved soil quality, namely, whether farmers’ self-assessments of their soil quality match soil scientists’ assessments. In this paper, using Tanzania National Panel Survey (TZNPS) data, part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA), we compare farmers’ own assessments of soil quality with scientific measurements of soil quality from the Harmonized World Soil Database (HWSD). We find a considerable “mismatch” and most notably, that 11.5 percent of survey households that reported having “good” soil quality are measured by scientific standards to have severely constrained nutrient availability. Mismatches between scientific measurements and farmer assessments of soil quality may highlight a potential barrier for programs seeking to encourage farmers to adopt soil quality improvement activities. 

EPAR Presentation #281
Publication Date: 08/12/2014
Type: Data Analysis
Abstract

This research project examines the traits of Tanzanian farmers living in five different farming system-based sub-regions: the Northern Highlands, Sukumaland, Central Maize, Coastal Cassava, and Zanzibar. We conducted quantitative analysis on data from the Tanzania National Panel Survey (TNPS). We complimented this analysis with qualitative data from fieldwork conducted in the summer of 2011 and September 2013 to present a quantitatively and qualitatively informed profile of the “typical” agricultural household’s land use patterns, demographic dynamics, and key issues or production constraints in each sub-region.

EPAR Presentation #280
Publication Date: 08/12/2014
Type: Data Analysis
Abstract

This poster presentation summarizes research on changes in crop planting decisions on the extensive and intensive margin in Tanzania, with regards to changes in agricultural land that a farmer has available and area planted in the context of smallholders and farming systems. We use household survey data from the Tanzania National Panel Survey (TNPS), part of the World Bank’s Living Standards Measurement Study–Integrated Surveys on Agriculture (LSMS – ISA) to test how much the agricultural land available to households changes, how much farmers change the proportion of land decidated to growing priority crops, and how crop area changes vary with changes in landholding. We find that almost half of households had a change of agricultural land area of at least half a hectare from 2008-2010. Smallholder farmers on average decreased the amount of available land between 2008 and 2010, while non-smallholder farmers increased agricultural land area during that time period, but that smallholder households planted a greater proportion of their agricultural land than nonsmallholders. Eighty percent of households changed crop proportions from 2008 to 2010, yet aggregate level indicators mask household level changes.

EPAR Research Brief #228
Publication Date: 04/18/2014
Type: Literature Review
Abstract

Cassava (Manihot esculenta Crantz) is a widely-grown staple food in the tropical and subtropical regions of Africa, Asia, and Latin America. In this brief we examine the environmental constraints to, and impacts of, smallholder cassava production systems in Sub-Saharan Africa (SSA) and South Asia (SA), noting where the analysis applies to only one of these regions. We highlight crop-environment interactions at three stages of the cassava value chain: pre-production (e.g., land clearing), production (e.g., soil, water, and input use), and post-production (e.g., crop storage). At each stage we emphasize environmental constraints on production (poor soil quality, water scarcity, crop pests, etc.) and also environmental impacts of crop production (e.g., soil erosion, water depletion and pesticide contamination). We then highlight good practices for overcoming environmental constraints and minimizing environmental impacts in smallholder cassava production systems. Evidence on environmental issues in smallholder cassava production is relatively thin, and unevenly distributed across regions. The literature on cassava in South Asian smallholder systems is limited, reflecting a crop of secondary importance (though it is widely found elsewhere in Asia such as South East Asia), in comparison to cassava in much of SSA. The majority of the research summarized in this brief is from SSA. The last row of Table 1 summarizes good practices currently identified in the literature. However, the appropriate strategy in a given situation will vary widely based on contextual factors, such as local environmental conditions, market access, cultural preferences, production practices and the policy environment.

EPAR Technical Report #254
Publication Date: 03/20/2014
Type: Literature Review
Abstract

This overview introduces a series of EPAR briefs in the Agriculture-Environment Series that examine crop-environment interactions for a range of crops in smallholder food production systems in Sub-Saharan Africa (SSA) and South Asia (SA). The briefs cover the following important food crops in those regions; rice (#208), maize (#218), sorghum/millets (#213), sweet potato/yam (#225), and cassava (#228).

Drawing on the academic literature and the field expertise of crop scientists, these briefs highlight crop-environment interactions at three stages of the crop value chain: pre-production (e.g., land clearing and tilling), production (such as water, nutrient and other input use), and post-production (e.g., waste disposal and crop storage). At each stage we emphasize environmental constraints on crop yields (including poor soils, water scarcity, crop pests) and impacts of crop production on the environment (such as soil erosion, water depletion and pest resistance). We then highlight best practices from the literature and from expert experience for minimizing negative environmental impacts in smallholder crop production systems.

This overview (along with the accompanying detailed crop briefs) seeks to provide a framework for stimulating across-crop discussions and informed debates on the full range of crop-environment interactions in agricultural development initiatives.

A paper based on this research series was published in Food Security in August 2015.

EPAR Research Brief #242
Publication Date: 01/08/2014
Type: Data Analysis
Abstract

The purpose of this analysis is to provide a measure of marketable surplus of maize in Tanzania. We proxy marketable surplus with national-level estimates of total maize sold, presumably the surplus for maize producing and consuming households. We also provide national level estimates of total maize produced and estimate “average prices” for Tanzania which allows this quantity to be expressed as an estimate of the value of marketable surplus. The analysis uses the Tanzanian National Panel Survey (TNPS) LSMS – ISA which is a nationally representative panel survey, for the years 2008/2009 and 2010/2011. A spreadsheet provides our estimates for different subsets of the sample and using different approaches to data cleaning and weighting. The total number of households for Tanzania was estimated with linear extrapolation based on the Tanzanian National Bureau of Statistics for the years 2002 and 2012. The weighted proportions of maize-producing and maize-selling households were multiplied to the national estimate of total households. This estimate of total Tanzanian maize-selling and maize-producing households was then multiplied by the average amount sold and by the average amount produced respectively to obtain national level estimates of total maize sold and total maize produced in 2009 and 2011.