Research Topics

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR TECHNICAL REPORT #362
Publication Date: 01/16/2019
Type: Data Analysis
Abstract

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:

Sub-Populations

  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

Characteristics
In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Technical Report #180
Publication Date: 10/27/2016
Type: Data Analysis
Abstract

We use OLS and logistic regression to investigate variation in husband and wife perspectives on the division of authority over agriculture-related decisions within households in rural Tanzania. Using original data from husbands and wives (interviewed separately) in 1,851 Tanzanian households, the analysis examines differences in the wife’s authority over 13 household and farming decisions. The study finds that the level of decision-making authority allocated to wives by their husbands, and the authority allocated by wives to themselves, both vary significantly across households. In addition to commonly considered assets such as women’s age and education, in rural agricultural households women’s health and labour activities also appear to matter for perceptions of authority. We also find husbands and wives interviewed separately frequently disagree with each other over who holds authority over key farming, family, and livelihood decisions. Further, the results of OLS and logistic regression suggest that even after controlling for various individual, household, and regional characteristics, husband and wife claims to decision-making authority continue to vary systematically by decision – suggesting decision characteristics themselves also matter. The absence of spousal agreement over the allocation of authority (i.e., a lack of “intrahousehold accord”) over different farm and household decisions is problematic for interventions seeking to use survey data to develop and inform strategies for reducing gender inequalities or empowering women in rural agricultural households. Findings provide policy and program insights into when studies interviewing only a single spouse or considering only a single decision may inaccurately characterize intra-household decision-making dynamics. 

EPAR Technical Report #240
Publication Date: 07/28/2016
Type: Data Analysis
Abstract

There is a wide gap between realized and potential yields for many crops in Sub-Saharan Africa (SSA). Experts identify poor soil quality as a primary constraint to increased agricultural productivity. Therefore, increasing agricultural productivity by improving soil quality is seen as a viable strategy to enhance food security. Yet adoption rates of programs focused on improving soil quality have generally been lower than expected. We explore a seldom considered factor that may limit farmers’ demand for improved soil quality, namely, whether farmers’ self-assessments of their soil quality match soil scientists’ assessments. In this paper, using Tanzania National Panel Survey (TZNPS) data, part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA), we compare farmers’ own assessments of soil quality with scientific measurements of soil quality from the Harmonized World Soil Database (HWSD). We find a considerable “mismatch” and most notably, that 11.5 percent of survey households that reported having “good” soil quality are measured by scientific standards to have severely constrained nutrient availability. Mismatches between scientific measurements and farmer assessments of soil quality may highlight a potential barrier for programs seeking to encourage farmers to adopt soil quality improvement activities. 

EPAR Technical Report #331
Publication Date: 06/20/2016
Type: Data Analysis
Abstract

Labor is one of the most productive assets for many rural households in developing countries. Despite the importance of labor—and time use more generally—little research has empirically examined the quality of time-use data in household surveys. Many household surveys rely on respondent recall, the reliability of which may decrease as recall length increases. In addition, respondents often report on time allocation for the entire household, which they may not know or recall as clearly as their own time allocation. Finally, simultaneous activities such as tending children while preparing dinner, may lead to the systematic underestimation of certain activities, particularly those that tend to be performed by women. This paper examines whether the identity of the survey respondent affects estimates of time allocation within the household. Drawing on the Ugandan LSMS-ISA household survey, we find that individuals responding for themselves report higher levels of time use over the previous week than when responding for other household members. Moreover, male respondents tend to underreport time allocation for females over the age of 15 as compared to female respondents, especially time spent on domestic activities. In addition, an analysis of the effects of two economics shocks—having a baby and floods or droughts—suggests that the identity of the respondent can affect substantive conclusions about the effects of shocks on household time use.

 

EPAR Technical Report #261
Publication Date: 06/14/2016
Type: Data Analysis
Abstract

Mobile technology is associated with a variety of positive development and social outcomes, and as a result reaching the “final frontier” of uncovered populations is an important policy issue. We use proprietary 2012 data on mobile coverage from Collins Bartholomew to estimate the proportion of the population living in areas without mobile coverage globally and in selected regions and countries, and use spatial analysis to identify where these populations are concentrated. We then compare our coverage estimates to data from previous years and estimates from the most recent literature to provide a picture of recent trends in coverage expansion, considering separately the trends for coverage of urban and rural populations. We find that mobile coverage expansion rates are slowing, as easier to reach urban populations in developing countries are now almost entirely covered and the remaining uncovered populations are more dispersed in rural areas and therefore more difficult and costly to reach. This analysis of mobile coverage trends was the focus of an initial report on mobile coverage estimates. In a follow-up paper prepared for presentation at the 2016 APPAM International Conference, we investigate the assumption that levels of mobile network coverage are related to the degree of market liberalization at the country level.

EPAR Research Brief #257
Publication Date: 12/17/2013
Type: Data Analysis
Abstract

The FAO defines a farming system as “a population of individual farm systems that have broadly similar resource bases, enterprise patterns, household livelihoods and constraints, and for which similar development strategies and interventions would be appropriate. Depending on the scale of the analysis, a farming system can encompass a few dozen or many millions of households.” We use the farming systems as defined by the Food and Agriculture Organization (FAO) for Sub-Saharan Africa. The FAO identifies eight main farming systems in Tanzania 1) maize mixed, 2) root crop, 3) coastal artisanal fishing, 4) highland perennial, 5) agro-pastoral millet/sorghum, 6) tree crop, 7) highland temperate mixed, and 8) pastoral. This analysis uses data from the Tanzanian National Panel Survey (TZNPS) LSMS – ISA to provide a comparison of farming systems throughout Tanzania. The TZNPS is a nationally-representative panel survey that includes households from seven of the eight FAO farming systems with only the smallest farming system, pastoral, lacking any representation.

EPAR Research Brief #216
Publication Date: 08/08/2013
Type: Data Analysis
Abstract

In this brief we analyze patterns of intercropping and differences between intercropped and monocropped plots among smallholder farmers in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). Intercropping is a planting strategy in which farmers cultivate at least two crops simultaneously on the same plot of land. In this brief we define intercropped plots as those for which respondents answered “yes” to the question “Was cultivation intercropped?” We define “intercropping households” as those households that intercropped at least one plot at any point during the year in comparison to households that did not intercrop any plots. The analysis reveals few significant, consistent productivity benefits to intercropping as currently practiced. Intercropped plots are not systematically more productive (in terms of value produced) than monocropped plots. The most commonly cited reason for intercropping was to provide a substitute crop in the case of crop failure. This suggests that food and income security are primary concerns for smallholder farmers in Tanzania. A separate appendix includes the details for our analyses.

EPAR Technical Report #237
Publication Date: 06/09/2013
Type: Data Analysis
Abstract

Local crop diversity and crop cultivation patterns among smallholder farmers have implications for two important elements of the design of agricultural interventions in developing countries. First, crop cultivation patterns may aid in targeting by helping to identify geographic areas where improved seed and other productivity enhancing technologies will be most easily applicable. Second, these patterns may help to identify potential unintended consequences of crop interventions focused on a single crop (e.g. maize). This report analyzes the distribution of crop diversity and crop cultivation patterns, and factors that can lead to changes in these patterns among smallholder farmers in Tanzania with a focus on regional patterns of crop cultivation and changes in these patterns over time, the factors that affect crop diversity and changes in crop diversity, and the level of substitutability between crops grown by smallholder farmers. All analysis is based on the Tanzania National Panel Survey (TNPS) datasets from 2008 and 2010. The paper is structured as follows. Section I provides a description of regional patterns of crop cultivation and crop diversity between the two years of the panel. Section II presents background on the theoretical factors affecting crop choice, and presents our findings on the results of a multivariate analysis on the factors contributing to crop diversity. Finally, Section 3 provides a preliminary analysis of the level of substitutability between cereal crop of importance in Tanzania (maize, rice and sorghum/millet) and also between these cereal crops and non-cereal crops.

EPAR Research Brief #224
Publication Date: 02/04/2013
Type: Data Analysis
Abstract

This brief present our analysis of sorghum and millet cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA).  In the 2007-2008 long and short rainy seasons, 13% of Tanzanian farming households cultivated sorghum and 6% cultivated millet, making these crops some of the least frequently cultivated priority crops in Tanzania. As a result, detailed analysis and determining statistical significance was limited by the low number of observations, particularly of millet. While sorghum and millet are often grouped together, our results suggest that in Tanzania there were differences among the households that cultivated these distinct crops. A separate appendix includes additional detail on our analyses.