Research Topics

EPAR Technical Report #303
Publication Date: 08/10/2015
Type: Data Analysis
Abstract

Common estimates of agricultural productivity rely upon crude measures of crop yield, typically defined as the weight harvested of a crop divided by the area harvested. But this common yield measure poorly reflects performance among farm systems combining multiple crops in one area (e.g., intercropping), and also ignores the possibility that farmers might lose crop area between planting and harvest (e.g., partial crop failure). Drawing on detailed plot-level data from Tanzania’s National Panel Survey, our research contrasts measures of smallholder productivity using production per hectare harvested and production per hectare planted.

An initial analysis (Research Brief - Rice Productivity Measurement) looking at rice production finds that yield by area planted differs significantly from yield by area harvested, particularly for smaller farms and female-headed households. OLS regression further reveals different demographic and management-related drivers of variability in yield gains – and thus different implications for policy and development interventions – depending on the yield measurement used. Findings suggest a need to better specify “yield” to more effectively guide agricultural development efforts.

 

EPAR Research Brief #312
Publication Date: 07/30/2015
Type: Literature Review
Abstract

This brief reviews the evidence of realized yield gains by smallholder farmers attributable to the use of high-quality seed and/or improved seed varieties. Our analysis suggests that in most cases, use of improved varieties and/or quality seed is associated with modest yield increases.  In the sample of 395 trials reviewed, positive yield changes accompanied the use of improved variety or quality seed, on average, in 10 out of 12 crops, with rice and cassava as the two exceptions.

EPAR Technical Report #245
Publication Date: 04/10/2015
Type: Data Analysis
Abstract

A farmer’s decision of how much land to dedicate to each crop reflects their farming options at the extensive and intensive margins. The extensive margin represents the total amount of agricultural land area that a farmer has available in a given year (referred to interchangeably as ‘farm size’ or ‘agricultural land’). A farmer increases land use on the extensive margin by planting on new agricultural land. The intensive margin represents area planted of crops as a proportion of total farm size. A farmer increases the intensive margin by increasing output within a fixed area. This analysis examines cropping patterns for households in Tanzania between 2008 and 2010 using data from the Tanzania National Panel Survey (TZNPS).  This brief describes changes in farm size, total area planted, and area planted of select annual crops to highlight the dynamic nature of farmer’s cropping choices for a sample population of 2,246 agricultural households that reported having any agricultural land in 2008 or 2010. Throughout the brief, we present summary statistics at the national level and compare them with household-level data to show how results vary depending on how the sub-population is defined and how average measures can mask household level changes. We analyze these questions in the context of smallholders (defined as households with total agricultural land area as less than two hectares) and farming systems.  

EPAR Research Brief #167
Publication Date: 10/07/2011
Type: Data Analysis
Abstract

This is "Section B" of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present our analyses of household characteristics by gender and by administrative zone, considering landholding size, number of crops grown, yields, livestock, input use, and food consumption.

EPAR Technical Report #163
Publication Date: 10/03/2011
Type: Data Analysis
Abstract

This is "Section F" of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present our analyses of soil characteristics and soil management, of input use by crop and gender at the plot and household levels, and of improved variety seeds and water management.

EPAR Technical Report #161
Publication Date: 10/01/2011
Type: Data Analysis
Abstract

This is "Section D" of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present our analyses of basic farm characteristics, land and labor productivity, crop sales, yield measures, intercropping, and pre- and post-harvest losses, including comparisons by gender of household head and by zone.

EPAR Research Brief #158
Publication Date: 08/03/2011
Type: Literature Review
Abstract

This literature review examines the environmental impacts of water buffalo in pastoral and mixed farming systems in Sub-Saharan Africa, South Asia, and South America). The environmental impacts of water buffalo are less widely studied than those of the other livestock species included in this series; typically, the environmental impacts of water buffalo are incorporated into discussions of cattle without more detailed impacts being broken down by bovine type. In Asia and India, where the majority of buffalo are raised, buffalo are typically kept in small herds of only a few animals, which may minimize the local impacts of their grazing on vegetation, soil erosion and water pollution. Some aspects of buffalo feeding and life cycle patterns, as observed in the Amazon, may cause their greenhouse gas emissions to differ from those of cattle: buffalo can fatten on a wider range of grasses, reach market size in a shorter time, transition better from dry to wet seasons, and are more resistant to bovine diseases. While buffalo grazing and trampling can lead to land degradation, buffalo can contribute to nutrient and resource cycling in farming systems because their manure is considered good fertilizer and they can remove and utilize biomass grown on agricultural plots. Mitigation strategies vary by category of environmental impact, but largely suggest improved productivity to reduce land conversion, modified management systems (e.g., biodiversity, water use and consumption, farm and pastures, and waste), and the reduction of livestock numbers altogether.

EPAR Research Brief #155
Publication Date: 07/31/2011
Type: Literature Review
Abstract

This literature review examines the environmental impacts of cattle in pastoral and mixed farming systems in Sub-Saharan Africa and South Asia. Cattle are frequently cited as having the most severe overall environmental impacts among livestock species due to: methane and nitrous oxide released from digestion and manure; land use and conversion; desertification; inefficient ratio of weight of feed and water consumed to weight of meat and dairy produced; conflicts between livestock herders and wildlife; the large volume of wastewater produced in meat and hide processing; and overgrazing of riparian areas. However, cattle have also been found to provide several environmental benefits such as keeping wildlife corridors open, preventing the spread of noxious weeds, and promoting the growth of local vegetative species. Mitigation strategies vary by category of environmental impact, but largely suggest improved productivity to reduce land conversion, modified management systems (e.g., biodiversity, water use and consumption, farm and pastures, grain and other feed, and waste), and the reduction of livestock numbers altogether. 

EPAR Research Brief #156
Publication Date: 07/31/2011
Type: Literature Review
Abstract

This literature review examines the environmental impacts of goats in pastoral and mixed farming systems in Sub-Saharan Africa and South Asia. We find that the most notable environmental implications of goats stem from their ability to graze on a wide variety of biomass sources in frequently marginal environments; while this intensive grazing stimulates biodiversity loss and may be more severe than grazing by other livestock species, goats are not a major driver of forest clearing due to their low economic value. Environmental benefits of goat production include keeping wildlife corridors open, preventing the spread of noxious weeds, and promoting the growth of local vegetative species through moderate grazing. Goats are also more water-efficient than large ruminants such as cattle. Mitigation strategies vary by category of environmental impact, but largely suggest improved productivity to reduce land conversion, modified management systems (e.g., biodiversity, water use and consumption, grazing intensity and frequency, and waste), and the reduction of livestock numbers altogether.

EPAR Research Brief #157
Publication Date: 07/31/2011
Type: Literature Review
Abstract

This literature review examines the environmental impacts of chickens in pastoral and mixed farming systems in Sub-Saharan Africa and South Asia. Compared to ruminant species (cattle, water buffalo, and goats), chickens produce lower carbon dioxide, methane, and nitrous oxide emissions, are a less significant driver of human expansion into natural habitat or of overgrazing, have lower impacts on the water cycle, and cause less destruction of natural habitats. Poultry’s major impacts on land degradation result from the production of their grain-intensive feed. Chicken production also poses a threat to avian biodiversity, as chickens are susceptible to viruses and act as vectors of disease transmission to avian wildlife. Chicken manure is widely viewed as a valuable fertilizer in developing countries, although transportation costs limit manure sales in local markets and the high nitrogen-phosphorous ratio can impact certain soils and water. Mitigation strategies vary by category of environmental impact, but largely suggest modified management systems (e.g., biodiversity, health, livestock feed efficiency, and waste).