Research Topics

EPAR Technical Report #261
Publication Date: 06/14/2016
Type: Data Analysis
Abstract

Mobile technology is associated with a variety of positive development and social outcomes, and as a result reaching the “final frontier” of uncovered populations is an important policy issue. We use proprietary 2012 data on mobile coverage from Collins Bartholomew to estimate the proportion of the population living in areas without mobile coverage globally and in selected regions and countries, and use spatial analysis to identify where these populations are concentrated. We then compare our coverage estimates to data from previous years and estimates from the most recent literature to provide a picture of recent trends in coverage expansion, considering separately the trends for coverage of urban and rural populations. We find that mobile coverage expansion rates are slowing, as easier to reach urban populations in developing countries are now almost entirely covered and the remaining uncovered populations are more dispersed in rural areas and therefore more difficult and costly to reach. This analysis of mobile coverage trends was the focus of an initial report on mobile coverage estimates. In a follow-up paper prepared for presentation at the 2016 APPAM International Conference, we investigate the assumption that levels of mobile network coverage are related to the degree of market liberalization at the country level.

EPAR Technical Report #333
Publication Date: 03/29/2016
Type: Literature Review
Abstract

In this report, we analyze the evidence that improved and expanded access to financial services can be a pathway out of poverty in Bangladesh and Tanzania. A brief background review of finance and poverty reduction evidence at the country, household, and individual level emphasizes the importance of a functioning financial system and the need to remove individual and household barriers to capital accumulation. We follow with an in-depth literature review on studies that link poverty reduction in Bangladesh or Tanzania with one or more of five financial intervention categories: remittances; government subsidies; conditional and unconditional cash transfers; credit; and combination programs. The resulting empirical evidence from these sources reveal a high share (61%) of positive reported associations between a financial intervention and outcome measure related to our five chosen financial interventions. The remaining studies found insignificant or mixed associations, but very few (3 out of 56) indicate that access to a financial mechanism was associated with worsened poverty. The heterogeneity of study types and interventions makes it difficult to draw conclusions about the efficacy of one intervention over another, and more research is needed on whether such approaches constitute a durable, long-term exit from poverty.

EPAR Research Brief #242
Publication Date: 01/08/2014
Type: Data Analysis
Abstract

The purpose of this analysis is to provide a measure of marketable surplus of maize in Tanzania. We proxy marketable surplus with national-level estimates of total maize sold, presumably the surplus for maize producing and consuming households. We also provide national level estimates of total maize produced and estimate “average prices” for Tanzania which allows this quantity to be expressed as an estimate of the value of marketable surplus. The analysis uses the Tanzanian National Panel Survey (TNPS) LSMS – ISA which is a nationally representative panel survey, for the years 2008/2009 and 2010/2011. A spreadsheet provides our estimates for different subsets of the sample and using different approaches to data cleaning and weighting. The total number of households for Tanzania was estimated with linear extrapolation based on the Tanzanian National Bureau of Statistics for the years 2002 and 2012. The weighted proportions of maize-producing and maize-selling households were multiplied to the national estimate of total households. This estimate of total Tanzanian maize-selling and maize-producing households was then multiplied by the average amount sold and by the average amount produced respectively to obtain national level estimates of total maize sold and total maize produced in 2009 and 2011.