Research Topics

EPAR TECHNICAL REPORT #362
Publication Date: 01/16/2019
Type: Data Analysis
Abstract

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:

Sub-Populations

  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

Characteristics
In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Technical Report #355 and EPAR Research Briefs #355A & #355B & #355C
Publication Date: 06/15/2018
Type: Literature Review
Abstract

Many low- and middle-income countries remain challenged by a financial infrastructure gap, evidenced by very low numbers of bank branches and automated teller machines (ATMs) (e.g., 2.9 branches per 100,000 people in Ethiopia versus 13.5 in India and 32.9 in the United States (U.S.) and 0.5 ATMs per 100,000 people in Ethiopia versus 19.7 in India and 173 in the U.S.) (The World Bank 2015a; 2015b). Furthermore, only an estimated 62 percent of adults globally have a banking account through a formal financial institution, leaving over 2 billion adults unbanked (Demirgüç–Kunt et al., 2015). While conventional banks have struggled to extend their networks into low-income and rural communities, digital financial services (DFS) have the potential to extend financial opportunities to these groups (Radcliffe & Voorhies, 2012). In order to utilize DFS however, users must convert physical cash to electronic money which requires access to cash-in, cash-out (CICO) networks—physical access points including bank branches but also including “branchless banking" access points such as ATMs, point-of-sale (POS) terminals, agents, and cash merchants. As mobile money and branchless banking expand, countries are developing new regulations to govern their operations (Lyman, Ivatury, & Staschen, 2006; Lyman, Pickens, & Porteous, 2008; Ivatury & Mas, 2008), including regulations targeting aspects of the different CICO interfaces. 

EPAR's work on CICO networks consists of five components. First, we summarize types of recent mobile money and branchless banking regulations related to CICO networks and review available evidence on the impacts these regulations may have on markets and consumers. In addition to this technical report we developed a short addendum (EPAR 355a) which includes a description of findings on patterns around CICO regulations over time. Another addendum (EPAR 355b) summarizes trends in exclusivity regulations including overall trends, country-specific approaches to exclusivity, and a table showing how available data on DFS adoption from FII and GSMA might relate to changes in exclusivity policies over time. A third addendum (EPAR 355c) explores trends in CICO network expansion with a focus on policies seeking to improve access among more remote or under-served populations. Lastly, we developed a database of CICO regulations, including a regulatory decision options table which outlines the key decisions that countries can make to regulate CICOs and a timeline of when specific regulations related to CICOs were introduced in eight focus countries, Bangladesh, India, Indonesia, Kenya, Nigeria, Pakistan, Tanzania, and Uganda.

EPAR Research Brief #67
Publication Date: 03/08/2010
Type: Literature Review
Abstract

Contract farming (CF) is an arrangement between farmers and a processing or marketing firm for the production and supply of agricultural products, often at predetermined prices. This literature review builds on EPAR's review of smallholder contract farming in Sub-Saharan Africa (SSA) and South Asia (EPAR Technical Report #60)  by specifically examining the evidence on impacts and potential benefits of contract farming for women in SSA. Key takeaways suggest women’s direct participation in contract farming is limited, with limited access to land and control over the allocation of labor and cash resources key constraints hindering women’s ability to benefit from CF. Further, we find that the impact of contract farming on women is often mediated by their relative bargaining power within the household.  

EPAR Research Brief #64
Publication Date: 03/03/2010
Type: Research Brief
Abstract

Introducing technology that is designed to be physically appropriate and valuable to women farmers can increase yields and raise income. But gender issues for agricultural technology projects in Sub-Saharan Africa (SSA) are extremely complex. The EPAR series on Gender and Cropping in SSA offers examples of how these issues can affect crop production and adoption of agricultural technologies at each point in the crop cycle for eight crops (cassava, cotton, maize, millet, rice, sorghum, wheat, and yam). This executive summary highlights innovative opportunities for interventions that consider these dimensions of gender. We encourage readers to consult the crop specific briefs for more details. We find that involving both men and women in the development, testing, and dissemination of agricultural technology has been shown to be successful in helping both benefit. Nevertheless, a consistent finding throughout the Gender and Cropping in SSA series is that maximum benefits from technological innovations cannot be realized when upstream factors like education, power, and land tenure heavily influence outcomes. Addressing these more basic upstream causes of gender inequality may be even more important in helping households increase productivity and maximize the benefits of technological interventions. 

EPAR Research Brief #33
Publication Date: 01/19/2010
Type: Research Brief
Abstract

A widely quoted estimate is that women produce 70 to 80 percent of Sub-Saharan Africa’s (SSA) food. Increasing farmer productivity in SSA therefore requires understanding how these women make planting, harvesting, and other decisions that affect the production, consumption, and marketing of their crops. This brief provides an overview of the gender cropping series highlighting similar themes from the various crops studied, presenting an overarching summary of the findings and conclusion of the individual literature reviews. The studies reviewed suggest that differential preferences and access to assets by men and women can affect adoption levels and the benefits that accrue to men and women. Findings show that women have less secure access to credit, land, inputs, extension, and markets. Similarly, women’s multi-faceted role in household management gives rise to preferences that may very well be different from those of men. Participatory Breeding and Participatory Varietal Selection are two methods shown to be successful in developing technology that is more appropriate and more likely to avoid unintended consequences. Regularly collecting gender-disaggregated statistics can also result in a greater understanding of how technology has affected both men and women. Agricultural technology has the potential to enhance both men’s and women’s welfare and productivity, but unless gender is sufficiently integrated into every step of the development and dissemination process, efforts will only achieve a fraction of their total possible benefit.

EPAR Research Brief #55
Publication Date: 01/18/2010
Type: Research Brief
Abstract

Estimates suggest that women grow 70-80 percent of Africa’s food crops, which may constrain their involvement in cash crop production, if food crop production places additional demands their time, resources and labor.  There is little evidence regarding women’s motivations or decisions to grow cash versus food crops. Similarly, the policy literature on cotton production and markets in Sub-Saharan Africa (SSA) does not explicitly address the issue of gender, further limiting the information available on the impact of cotton production on women. This brief provides an overview of the role of women in cotton production, and provides a framework for analyzing barriers to women and technology’s impact on women throughout the cropping cycle. We find that women are typically not the primary cultivators of cotton, and that cotton production is a household cultivation strategy, especially in West and Central Africa. Cotton cultivation often provides access to fertilizers, pesticides and extension services that are otherwise unavailable to households. Women have benefitted from household cotton income when they have input in intra-household resource allocation decisions or when they are able to grow cotton on personal plots and have control over the income it generates. Women also benefit from cotton when it offers them the opportunity to engage in paid labor. The data suggests, however, that cotton cultivation can negatively impact women when it increases their unpaid agricultural labor burden or exposes them to harmful chemicals.