Research Topics

EPAR Technical Report #180
Publication Date: 10/27/2016
Type: Data Analysis
Abstract

We use OLS and logistic regression to investigate variation in husband and wife perspectives on the division of authority over agriculture-related decisions within households in rural Tanzania. Using original data from husbands and wives (interviewed separately) in 1,851 Tanzanian households, the analysis examines differences in the wife’s authority over 13 household and farming decisions. The study finds that the level of decision-making authority allocated to wives by their husbands, and the authority allocated by wives to themselves, both vary significantly across households. In addition to commonly considered assets such as women’s age and education, in rural agricultural households women’s health and labour activities also appear to matter for perceptions of authority. We also find husbands and wives interviewed separately frequently disagree with each other over who holds authority over key farming, family, and livelihood decisions. Further, the results of OLS and logistic regression suggest that even after controlling for various individual, household, and regional characteristics, husband and wife claims to decision-making authority continue to vary systematically by decision – suggesting decision characteristics themselves also matter. The absence of spousal agreement over the allocation of authority (i.e., a lack of “intrahousehold accord”) over different farm and household decisions is problematic for interventions seeking to use survey data to develop and inform strategies for reducing gender inequalities or empowering women in rural agricultural households. Findings provide policy and program insights into when studies interviewing only a single spouse or considering only a single decision may inaccurately characterize intra-household decision-making dynamics. 

EPAR Technical Report #331
Publication Date: 06/20/2016
Type: Data Analysis
Abstract

Labor is one of the most productive assets for many rural households in developing countries. Despite the importance of labor—and time use more generally—little research has empirically examined the quality of time-use data in household surveys. Many household surveys rely on respondent recall, the reliability of which may decrease as recall length increases. In addition, respondents often report on time allocation for the entire household, which they may not know or recall as clearly as their own time allocation. Finally, simultaneous activities such as tending children while preparing dinner, may lead to the systematic underestimation of certain activities, particularly those that tend to be performed by women. This paper examines whether the identity of the survey respondent affects estimates of time allocation within the household. Drawing on the Ugandan LSMS-ISA household survey, we find that individuals responding for themselves report higher levels of time use over the previous week than when responding for other household members. Moreover, male respondents tend to underreport time allocation for females over the age of 15 as compared to female respondents, especially time spent on domestic activities. In addition, an analysis of the effects of two economics shocks—having a baby and floods or droughts—suggests that the identity of the respondent can affect substantive conclusions about the effects of shocks on household time use.

 

EPAR Research Brief #242
Publication Date: 01/08/2014
Type: Data Analysis
Abstract

The purpose of this analysis is to provide a measure of marketable surplus of maize in Tanzania. We proxy marketable surplus with national-level estimates of total maize sold, presumably the surplus for maize producing and consuming households. We also provide national level estimates of total maize produced and estimate “average prices” for Tanzania which allows this quantity to be expressed as an estimate of the value of marketable surplus. The analysis uses the Tanzanian National Panel Survey (TNPS) LSMS – ISA which is a nationally representative panel survey, for the years 2008/2009 and 2010/2011. A spreadsheet provides our estimates for different subsets of the sample and using different approaches to data cleaning and weighting. The total number of households for Tanzania was estimated with linear extrapolation based on the Tanzanian National Bureau of Statistics for the years 2002 and 2012. The weighted proportions of maize-producing and maize-selling households were multiplied to the national estimate of total households. This estimate of total Tanzanian maize-selling and maize-producing households was then multiplied by the average amount sold and by the average amount produced respectively to obtain national level estimates of total maize sold and total maize produced in 2009 and 2011.