Populations

Types of Research

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR Technical Report #240
Publication Date: 07/28/2016
Type: Data Analysis
Abstract

There is a wide gap between realized and potential yields for many crops in Sub-Saharan Africa (SSA). Experts identify poor soil quality as a primary constraint to increased agricultural productivity. Therefore, increasing agricultural productivity by improving soil quality is seen as a viable strategy to enhance food security. Yet adoption rates of programs focused on improving soil quality have generally been lower than expected. We explore a seldom considered factor that may limit farmers’ demand for improved soil quality, namely, whether farmers’ self-assessments of their soil quality match soil scientists’ assessments. In this paper, using Tanzania National Panel Survey (TZNPS) data, part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA), we compare farmers’ own assessments of soil quality with scientific measurements of soil quality from the Harmonized World Soil Database (HWSD). We find a considerable “mismatch” and most notably, that 11.5 percent of survey households that reported having “good” soil quality are measured by scientific standards to have severely constrained nutrient availability. Mismatches between scientific measurements and farmer assessments of soil quality may highlight a potential barrier for programs seeking to encourage farmers to adopt soil quality improvement activities. 

EPAR Technical Report #261
Publication Date: 06/14/2016
Type: Data Analysis
Abstract

Mobile technology is associated with a variety of positive development and social outcomes, and as a result reaching the “final frontier” of uncovered populations is an important policy issue. We use proprietary 2012 data on mobile coverage from Collins Bartholomew to estimate the proportion of the population living in areas without mobile coverage globally and in selected regions and countries, and use spatial analysis to identify where these populations are concentrated. We then compare our coverage estimates to data from previous years and estimates from the most recent literature to provide a picture of recent trends in coverage expansion, considering separately the trends for coverage of urban and rural populations. We find that mobile coverage expansion rates are slowing, as easier to reach urban populations in developing countries are now almost entirely covered and the remaining uncovered populations are more dispersed in rural areas and therefore more difficult and costly to reach. This analysis of mobile coverage trends was the focus of an initial report on mobile coverage estimates. In a follow-up paper prepared for presentation at the 2016 APPAM International Conference, we investigate the assumption that levels of mobile network coverage are related to the degree of market liberalization at the country level.

EPAR Presentation #281
Publication Date: 08/12/2014
Type: Data Analysis
Abstract

This research project examines the traits of Tanzanian farmers living in five different farming system-based sub-regions: the Northern Highlands, Sukumaland, Central Maize, Coastal Cassava, and Zanzibar. We conducted quantitative analysis on data from the Tanzania National Panel Survey (TNPS). We complimented this analysis with qualitative data from fieldwork conducted in the summer of 2011 and September 2013 to present a quantitatively and qualitatively informed profile of the “typical” agricultural household’s land use patterns, demographic dynamics, and key issues or production constraints in each sub-region.

EPAR Research Brief #242
Publication Date: 01/08/2014
Type: Data Analysis
Abstract

The purpose of this analysis is to provide a measure of marketable surplus of maize in Tanzania. We proxy marketable surplus with national-level estimates of total maize sold, presumably the surplus for maize producing and consuming households. We also provide national level estimates of total maize produced and estimate “average prices” for Tanzania which allows this quantity to be expressed as an estimate of the value of marketable surplus. The analysis uses the Tanzanian National Panel Survey (TNPS) LSMS – ISA which is a nationally representative panel survey, for the years 2008/2009 and 2010/2011. A spreadsheet provides our estimates for different subsets of the sample and using different approaches to data cleaning and weighting. The total number of households for Tanzania was estimated with linear extrapolation based on the Tanzanian National Bureau of Statistics for the years 2002 and 2012. The weighted proportions of maize-producing and maize-selling households were multiplied to the national estimate of total households. This estimate of total Tanzanian maize-selling and maize-producing households was then multiplied by the average amount sold and by the average amount produced respectively to obtain national level estimates of total maize sold and total maize produced in 2009 and 2011.