Research Topics

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR TECHNICAL REPORT #362
Publication Date: 01/16/2019
Type: Data Analysis
Abstract

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:

Sub-Populations

  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

Characteristics
In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Research Brief #167
Publication Date: 10/07/2011
Type: Data Analysis
Abstract

This is "Section B" of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present our analyses of household characteristics by gender and by administrative zone, considering landholding size, number of crops grown, yields, livestock, input use, and food consumption.

EPAR Technical Report #165
Publication Date: 10/05/2011
Type: Data Analysis
Abstract

This is "Section G" of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present our analyses of data related to consumption of priority foods, total value of consumption, levels of food consumption and production, including analyses by zone in Tanzania. We find, for example, that the mean total value of household consumption was higher for agricultural households (US$27.28) compared to non-agricultural households (US$26.59), but the mean per capita value of household consumption was higher for non-agricultural households (US$7.32) compared to agricultural households (US$5.24). The mean per capita value of weekly consumption for the Southern zone was only US$5.34, compared to the highest mean per capita value of US$6.63 in the Eastern zone. The Central zone still had the lowest per capita value of consumption at US$4.40.

EPAR Technical Report #164
Publication Date: 10/04/2011
Type: Data Analysis
Abstract

This is "Section E" of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present our analyses of livestock and livestock by-product characteristics by gender of household head and by zones, as well as our analyses of livestock disease, vaccines, and theft.

EPAR Technical Report #163
Publication Date: 10/03/2011
Type: Data Analysis
Abstract

This is "Section F" of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present our analyses of soil characteristics and soil management, of input use by crop and gender at the plot and household levels, and of improved variety seeds and water management.

EPAR Technical Report #161
Publication Date: 10/01/2011
Type: Data Analysis
Abstract

This is "Section D" of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present our analyses of basic farm characteristics, land and labor productivity, crop sales, yield measures, intercropping, and pre- and post-harvest losses, including comparisons by gender of household head and by zone.

EPAR Technical Report #154
Publication Date: 09/30/2011
Type: Data Analysis
Abstract

This is the introductory section of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present an overview of report sections, as well as an executive summary of findings on crops and livestock, constraints to productivity, and productivity and nutrition outcomes.

EPAR Technical Report #160
Publication Date: 09/30/2011
Type: Data Analysis
Abstract

This is "Section C" of a report that presents estimates and summary statistics from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We present our analyses of the basic characteristics of household heads and other household members, as well as our analyses of education for adults, children, and household heads by gender and zone.

EPAR Technical Report #140
Publication Date: 03/17/2011
Type: Data Analysis
Abstract

This brief explores agricultural data for Tanzania from the LSMS-ISA and Farmer First household surveys. We first present the differences in the LSMS and Farmer First survey design and in basic descriptives from the two data sources. We then present the results of our initial LSMS data analysis using the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), focusing on the agricultural data, before presenting our analysis of farmer aspirations and of gender differences using  the Farmer First data.