Research Topics

EPAR Technical Report #336
Publication Date: 03/04/2016
Type: Data Analysis
Abstract

Common estimates of agricultural productivity rely upon crude measures of crop yield, typically defined as the weight harvested of a crop divided by the area harvested. But this common yield measure poorly reflects performance among farm systems combining multiple crops in one area (e.g., intercropping), and also ignores the possibility that farmers might lose crop area between planting and harvest (e.g., partial crop failure). Drawing on detailed plot-level data from the LSMS-ISA in Tanzania, Nigeria, and Ethiopia, we show how various yield measurement decisions affect estimates of smallholder yields for a variety of crops. We consider the effect of measuring production by plot area, area planted, and area harvested, of trimming the top 1% and 2% of values, and of considering different groups of farmers according to total area planted. 

 

EPAR Research Brief #332
Publication Date: 02/26/2016
Type: Literature Review
Abstract

Household survey data are a key source of information for policy-makers at all levels. In developing countries, household data are commonly used to target interventions and evaluate progress towards development goals. The World Bank’s Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) are a particularly rich source of nationally-representative panel data for six Sub-Saharan African countries: Ethiopia, Malawi, Niger, Nigeria, Tanzania, and Uganda. To help understand how these data are used, EPAR reviewed the existing literature referencing the LSMS-ISA and identified 415 publications, working papers, reports, and presentations with primary research based on LSMS-ISA data. We find that use of the LSMS-ISA has been increasing each year since the first survey waves were made available in 2009, with several universities, multilateral organizations, government offices, and research groups across the globe using the data to answer questions on agricultural productivity, farm management, poverty and welfare, nutrition, and several other topics.

EPAR Research Brief #321
Publication Date: 01/29/2016
Type: Literature Review
Abstract

Agricultural productivity growth has been empirically linked to poverty reduction across a range of measures for both staple and export crops. Many public and private organizations have thus made it a priority to increase farm productivity, and have invested billions toward this end.This report compiles measures commonly used to track agricultural productivity and discusses the ways in which they are subject to error, bias, and other data limitations. Though each measure has limitations, choosing the measure(s) most appropriate to the goals of an analysis and understanding the sources of variation allows for more effective and closely targeted investments and policy and program recommendations, particularly when measures suggest different drivers of productivity growth and links to poverty reduction. 

EPAR Research Brief #318
Publication Date: 01/29/2016
Type: Research Brief
Abstract

This brief summarizes the evidence base for various types of commonly-used time use measurements, lists categories of time use as identified by major organizations and reports, and identifies studies finding significant impacts of interventions designed to reduce specific time constraints. The various approaches to time use measurement method each have different limitations (cost, timing, seasonality, susceptibility to recall bias, etc.), which may have implications for data analysis. The choice of how to measure time use may be particularly important for analyzing women’s time use. For example, limiting respondents to one activity per time slot when measuring daily time allocation may underestimate women's productivity or time allocations, as they are more likely than men to conduct simultaneous activities, such as childcare along with other activities.

EPAR Research Brief #319
Publication Date: 01/29/2016
Type: Research Brief
Abstract

This four-part analysis describes the current suite of food security measures, then analyzes the respective relationships between food security and poverty, GDP, and crop yields using findings from in-depth literature reviews. Food security measures are criticized for inaccurately characterizing food security at individual, household, and national scales, yet guidelines exist to prescribe a food security measure for a given situation. Some authors see the potential of a combination of indicators that apply at different scales rather than a single, universal food security measure. Limited literature exists on the relationship between food security and poverty, GDP, or crop yields. The relationship between food security and poverty is particularly challenging because neither term has a consistent definition, and the limited literature suggests a lack of consensus among experts. Little empirical research exists on the relationship between food security and GDP, though studies generally note an association between the two Studies that evaluate food security and crop yields provide limited evidence that the two are associated, though many studies use measures of crop yield as food security indicators and vice versa. More research is needed to establish whether there are preferred food security measurement tools for specific scales and situations, and to further explore the relationship between food security and poverty, GDP, and crop yields.

EPAR Technical Report #310
Publication Date: 11/20/2015
Type: Literature Review
Abstract

Cereal yield variability is influenced by initial conditions such as suitability of the farming system for cereal cultivation, current production quantities and yields, and zone-specific potential yields limited by water availability. However, exogenous factors such as national policies, climate, and international market conditions also impact farm-level yields directly or provide incentives or disincentives for farmers to intensify production. We conduct a selective literature review of policy-related drivers of maize yields in Ethiopia, Kenya, Malawi, Rwanda, Tanzania, and Uganda and pair the findings with FAOSTAT data on yield and productivity. This report presents our cumulative findings along with contextual evidence of the hypothesized drivers behind maize yield trends over the past 20 years for the focus countries.

EPAR Technical Report #303
Publication Date: 08/10/2015
Type: Data Analysis
Abstract

Common estimates of agricultural productivity rely upon crude measures of crop yield, typically defined as the weight harvested of a crop divided by the area harvested. But this common yield measure poorly reflects performance among farm systems combining multiple crops in one area (e.g., intercropping), and also ignores the possibility that farmers might lose crop area between planting and harvest (e.g., partial crop failure). Drawing on detailed plot-level data from Tanzania’s National Panel Survey, our research contrasts measures of smallholder productivity using production per hectare harvested and production per hectare planted.

An initial analysis (Research Brief - Rice Productivity Measurement) looking at rice production finds that yield by area planted differs significantly from yield by area harvested, particularly for smaller farms and female-headed households. OLS regression further reveals different demographic and management-related drivers of variability in yield gains – and thus different implications for policy and development interventions – depending on the yield measurement used. Findings suggest a need to better specify “yield” to more effectively guide agricultural development efforts.

 

EPAR Technical Report #311
Publication Date: 08/06/2015
Type: Literature Review
Abstract

This report provides a summary of findings from six Financial Inclusion Insights (FII) data analysis reports conducted by various agencies for the Bill & Melinda Gates Foundation (BMGF). These reports investigate barriers to financial inclusion and use of digital financial services (DFS) in Bangladesh, India, Kenya, Nigeria, Pakistan, Tanzania, and Uganda. We compile comparable gender-specific statistics, summarize the authors’ findings to determine commonalities and differences across countries, and highlight gender-specific conclusions and recommendations provided in the studies. 

EPAR Research Brief #312
Publication Date: 07/30/2015
Type: Literature Review
Abstract

This brief reviews the evidence of realized yield gains by smallholder farmers attributable to the use of high-quality seed and/or improved seed varieties. Our analysis suggests that in most cases, use of improved varieties and/or quality seed is associated with modest yield increases.  In the sample of 395 trials reviewed, positive yield changes accompanied the use of improved variety or quality seed, on average, in 10 out of 12 crops, with rice and cassava as the two exceptions.

EPAR Technical Report #245
Publication Date: 04/10/2015
Type: Data Analysis
Abstract

A farmer’s decision of how much land to dedicate to each crop reflects their farming options at the extensive and intensive margins. The extensive margin represents the total amount of agricultural land area that a farmer has available in a given year (referred to interchangeably as ‘farm size’ or ‘agricultural land’). A farmer increases land use on the extensive margin by planting on new agricultural land. The intensive margin represents area planted of crops as a proportion of total farm size. A farmer increases the intensive margin by increasing output within a fixed area. This analysis examines cropping patterns for households in Tanzania between 2008 and 2010 using data from the Tanzania National Panel Survey (TZNPS).  This brief describes changes in farm size, total area planted, and area planted of select annual crops to highlight the dynamic nature of farmer’s cropping choices for a sample population of 2,246 agricultural households that reported having any agricultural land in 2008 or 2010. Throughout the brief, we present summary statistics at the national level and compare them with household-level data to show how results vary depending on how the sub-population is defined and how average measures can mask household level changes. We analyze these questions in the context of smallholders (defined as households with total agricultural land area as less than two hectares) and farming systems.