Research Topics

EPAR Presentation #280
Publication Date: 08/12/2014
Type: Data Analysis
Abstract

This poster presentation summarizes research on changes in crop planting decisions on the extensive and intensive margin in Tanzania, with regards to changes in agricultural land that a farmer has available and area planted in the context of smallholders and farming systems. We use household survey data from the Tanzania National Panel Survey (TNPS), part of the World Bank’s Living Standards Measurement Study–Integrated Surveys on Agriculture (LSMS – ISA) to test how much the agricultural land available to households changes, how much farmers change the proportion of land decidated to growing priority crops, and how crop area changes vary with changes in landholding. We find that almost half of households had a change of agricultural land area of at least half a hectare from 2008-2010. Smallholder farmers on average decreased the amount of available land between 2008 and 2010, while non-smallholder farmers increased agricultural land area during that time period, but that smallholder households planted a greater proportion of their agricultural land than nonsmallholders. Eighty percent of households changed crop proportions from 2008 to 2010, yet aggregate level indicators mask household level changes.

EPAR Research Brief #285
Publication Date: 06/19/2014
Type: Literature Review
Abstract

This brief draws on recent reports by the OECD, the World Bank, the Overseas Development Institute (ODI), the Climate Policy Initiative (CPI) and others to provide an overview of climate finance in developing countries. The brief is divided into three sections: (i) sources of global climate finance; (ii) country-level flows of climate finance; and (iii) applications of climate finance in developing countries. The brief is designed to give a concise overview of financial flows directed at climate change mitigation and adaptation globally and in developing countries, with an introduction to climate finance accounting such that climate financial flow volumes can be compared to aid volumes in other sectors. Total global climate finance flows were approximately USD $364 billion in 2011 (Buchner et al., 2012) and $359 billion in 2012. However the vast majority of these flows - 76%, or $275 billion - was finance generated and spent within a country’s own borders (domestic finance) (Buchner et al., 2013). The “Fast-Start Finance” period from 2010-2012 saw $35 billion in new aid mobilized for climate finance in developing countries. Developed countries have recently committed to mobilize an additional $100 billion per year by 2020.

EPAR Technical Report #269
Publication Date: 05/21/2014
Type: Literature Review
Abstract

The commercial alcohol industry in Africa may provide opportunities to increase market access and incomes for smallholder farmers by increasing access to agriculture-alcohol value chains. Despite the benefits of increased market opportunities, the high costs to human health and social welfare from increased alcohol use and alcoholism could contribute to a net loss for society. To better understand the tradeoffs between increased market access for smallholders and societal costs associated with harmful alcohol consumption, this paper provides an inventory of the societal costs of alcohol in Sub-Saharan Africa (SSA). We examine direct costs associated with addressing harmful effects of alcohol and treating alcohol-related illnesses, as well as indirect costs associated with the goods and services that are not delivered as a consequence of drinking and its impact on personal productivity. We identified resources using Google Scholar and the University of Washington libraries, and utilized the Global Burden of Disease (GBD) database by the Institute for Health Metrics and Evaluation (IHME) and the World Health Organization’s Global Information System on Alcohol and Health (GISAH) database. We also utilized FAOSTAT to retrieve raw data on national-level alcohol production and export statistics. We find that hazardous alcohol use contributes to early mortality and morbidity, loss of productivity, property damage, and other social costs and harms for drinkers and those around them. Drinking also affects vulnerable segments of the population disproportionately. Policymakers, local authorities, and donor agencies can use the information presented in this paper to plan and prepare for the higher consumption levels and subsequent social costs that may follow through agricultural development and economic growth in the region.  

EPAR Research Brief #228
Publication Date: 04/18/2014
Type: Literature Review
Abstract

Cassava (Manihot esculenta Crantz) is a widely-grown staple food in the tropical and subtropical regions of Africa, Asia, and Latin America. In this brief we examine the environmental constraints to, and impacts of, smallholder cassava production systems in Sub-Saharan Africa (SSA) and South Asia (SA), noting where the analysis applies to only one of these regions. We highlight crop-environment interactions at three stages of the cassava value chain: pre-production (e.g., land clearing), production (e.g., soil, water, and input use), and post-production (e.g., crop storage). At each stage we emphasize environmental constraints on production (poor soil quality, water scarcity, crop pests, etc.) and also environmental impacts of crop production (e.g., soil erosion, water depletion and pesticide contamination). We then highlight good practices for overcoming environmental constraints and minimizing environmental impacts in smallholder cassava production systems. Evidence on environmental issues in smallholder cassava production is relatively thin, and unevenly distributed across regions. The literature on cassava in South Asian smallholder systems is limited, reflecting a crop of secondary importance (though it is widely found elsewhere in Asia such as South East Asia), in comparison to cassava in much of SSA. The majority of the research summarized in this brief is from SSA. The last row of Table 1 summarizes good practices currently identified in the literature. However, the appropriate strategy in a given situation will vary widely based on contextual factors, such as local environmental conditions, market access, cultural preferences, production practices and the policy environment.

EPAR Technical Report #254
Publication Date: 03/20/2014
Type: Literature Review
Abstract

This overview introduces a series of EPAR briefs in the Agriculture-Environment Series that examine crop-environment interactions for a range of crops in smallholder food production systems in Sub-Saharan Africa (SSA) and South Asia (SA). The briefs cover the following important food crops in those regions; rice (#208), maize (#218), sorghum/millets (#213), sweet potato/yam (#225), and cassava (#228).

Drawing on the academic literature and the field expertise of crop scientists, these briefs highlight crop-environment interactions at three stages of the crop value chain: pre-production (e.g., land clearing and tilling), production (such as water, nutrient and other input use), and post-production (e.g., waste disposal and crop storage). At each stage we emphasize environmental constraints on crop yields (including poor soils, water scarcity, crop pests) and impacts of crop production on the environment (such as soil erosion, water depletion and pest resistance). We then highlight best practices from the literature and from expert experience for minimizing negative environmental impacts in smallholder crop production systems.

This overview (along with the accompanying detailed crop briefs) seeks to provide a framework for stimulating across-crop discussions and informed debates on the full range of crop-environment interactions in agricultural development initiatives.

A paper based on this research series was published in Food Security in August 2015.

EPAR Research Brief #257
Publication Date: 12/17/2013
Type: Data Analysis
Abstract

The FAO defines a farming system as “a population of individual farm systems that have broadly similar resource bases, enterprise patterns, household livelihoods and constraints, and for which similar development strategies and interventions would be appropriate. Depending on the scale of the analysis, a farming system can encompass a few dozen or many millions of households.” We use the farming systems as defined by the Food and Agriculture Organization (FAO) for Sub-Saharan Africa. The FAO identifies eight main farming systems in Tanzania 1) maize mixed, 2) root crop, 3) coastal artisanal fishing, 4) highland perennial, 5) agro-pastoral millet/sorghum, 6) tree crop, 7) highland temperate mixed, and 8) pastoral. This analysis uses data from the Tanzanian National Panel Survey (TZNPS) LSMS – ISA to provide a comparison of farming systems throughout Tanzania. The TZNPS is a nationally-representative panel survey that includes households from seven of the eight FAO farming systems with only the smallest farming system, pastoral, lacking any representation.

EPAR Research Brief #225
Publication Date: 10/15/2013
Type: Literature Review
Abstract

After cereals, root and tuber crops - including sweetpotato and yam (in addition to cassava and aroids), are the second most cultivated crops in tropical countries. This literature review examines the environmental constraints to, and impacts of, sweetpotato and yam production systems in Sub-Saharan Africa (SSA) and South Asia (SA). The review highlights crop-environment interactions at three stages of the sweetpotato/yam value chain: pre-production (e.g., land clearing), production (e.g., soil, water, and input use), and post-production (e.g., waste disposal, crop storage and transport). We find that sweetpotato and yam face similar environmental stressors. In particular, because sweetpotato and yam are vegetatively propagated, the most significant (and avoidable) environmental constraints to crop yields include disease and pest infection transmitted through the use of contaminated planting materials. Published estimates suggest yield gains in the range of 30–60% can be obtained through using healthy planting material. Moreover, reducing pest damage in the field can greatly increase the storage life of root and tuber crops after harvest – currently losses from rot and desiccation can claim up to 100% of stored sweetpotato and yam on smallholder farms.

EPAR Research Brief #215
Publication Date: 08/31/2013
Type: Literature Review
Abstract

Maize has expanded through the 20th and into the 21st century to become the principle staple food crop produced and consumed by smallholder farm households in Sub-Saharan Africa (SSA), and maize production has also expanded in South Asia (SA) farming systems. In this brief we examine the environmental constraints to, and impacts of, smallholder maize production systems in SSA and SA, noting where findings apply to only one of these regions. We highlight crop-environment interactions at three stages of the maize value chain: pre-production (e.g., land clearing), production (e.g., fertilizer, water, and other input use), and post-production (e.g., waste disposal and crop storage). At each stage we emphasize environmental constraints on maize production (such as poor soil quality, water scarcity, or crop pests) and also environmental impacts of maize production (such as soil erosion, water depletion, or chemical contamination). We then highlight best or good practices for overcoming environmental constraints and minimizing environmental impacts in smallholder maize production systems. Evidence on environmental constraints and impacts in smallholder maize production is uneven. Many environmental concerns such as biodiversity loss are commonly demonstrated more broadly for the agroecology or farming systems in which maize is grown, rather than specifically for the maize crop. And more research is available on the environmental impacts of agrochemical-based intensive cereal farming in Asia (where high-input maize is a common component) than on the low-input subsistence-scale maize cultivation more typical of SSA. Decisive constraint and impact estimates are further complicated by the fact that many crop-environment interactions in maize and other crops are a matter of both cause and effect (e.g., poor soils decrease maize yields, while repeated maize harvests degrade soils). Fully understanding maize-environment interactions thus requires recognizing instances where shortterm adaptations to environmental constraints might be exacerbating other medium- or long-term environmental problems. Conclusions on the strength of published findings on crop-environment interactions in maize systems further depend on one’s weighting of economic versus ecological perspectives, physical science versus social science, academic versus grey literature, and quantity versus quality of methods and findings.

EPAR Research Brief #213
Publication Date: 08/31/2013
Type: Literature Review
Abstract

 In this brief we examine the environmental constraints to, and impacts of, smallholder sorghum and millet production systems in Sub-Saharan Africa (SSA) and South Asia (SA). Millet in this paper primarily refers to pearl millet (Pennisetum glaucum), although a number of other millets of significance to smallholder production and food security are also discussed. Sorghum and millets are known for being more tolerant of major environmental stresses including drought and poor soil quality than other major cereals. But water availability is still among the greatest constraints to increased grain production, and soil fertility also significantly limits yields, especially in cases where cultivation occurs on marginal lands and where crop residues are removed for alternative uses. Ultimately sorghum and millets’ relatively higher tolerance to abiotic stresses is expected to promote an increase in global cropping area for sorghum and millets as an adaptation to climate change. Sorghum and millet exhibit relatively few of the environmental impacts commonly associated with more intensively cultivated crops such as fertilizer runoff, pesticide contamination, or water depletion, since both of these crops are overwhelmingly grown by smallholder farmers with few, if any, chemical or irrigation inputs. Nevertheless, the tendency to grow sorghum and millet on marginal and heavily sloped lands does pose some environmental risks – including soil degradation and erosion – that can be mitigated through the adoption of best practices as described in the brief. 

EPAR Technical Report #239
Publication Date: 08/20/2013
Type: Literature Review
Abstract

This research brief provides an overview of the banana and plantain value chains in West Africa. Because of the greater production and consumption of plantains than bananas in the region, the brief focuses on plantains and concentrates on the major plantain-producing countries of Ghana, Cameroon, and Nigeria. The brief is divided into the following sections: Key Statistics (trends in banana and plantain production, consumption, and trade since 1990), Production, Post-Harvest Practices and Challenges, Marketing Systems, and Importance (including household consumption and nutrition). West Africa is one of the major plantain-producing regions of the world, accounting for approximately 32% of worldwide production. Plantains are an important staple crop in the region with a high nutritional content, variety of preparation methods, and a production cycle that is less labor-intensive than many other crops. In addition to plantains, bananas are also grown in West Africa, but they account for only 2.3% of worldwide production. Bananas are more likely than plantains to be grown for export rather than local consumption. Major constraints to banana and plantain production include pests and disease, short shelf life, and damage during transportation.