Research Topics

EPAR Technical Report #388
Publication Date: 05/30/2019
Type: Data Analysis
Abstract

Designing effective policies for economic development and sustainable rural transformation, and monitoring progress toward the associated policy goals, often entails categorizing populations by their rural or urban status. Yet there exists no universal definition of what constitutes an "urban" area; countries alternately apply criteria related to settlement size, population density, or economic advancement. In this study, we explore the implications of applying different urban definitions in Tanzania and Nigeria, drawing from a wide set of data sources (administrative, remotely-sensed, and survey-based) to understand how urban categorizations align across data types and based on different criteria. To understand how an analysis of rural change is affected by the urban/rural definition applied, we begin with the nationally representative Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), collected in Tanzania (2008-2014) and Nigeria (2010-2015). This data set contains rich information on household demographics and income-generating activities, and crucially contains household geo-coordinates. Nine urban definitions are assessed, based on local administrative designations used by the National Bureaus of Statistics in Tanzania and Nigeria; settlement size (drawing from the Africapolis geospatial database of cities in Africa); population density (drawing from WorldPop); night lights intensity (drawing from the NOAA Nighttime Lights of the World dataset); impervious surface cover (drawing from the NASA Global Man-made Impervious Surface dataset from Landsat); local economic orientation (drawing from the LSMS-ISA); and our subjective assessment of daytime satellite imagery available via Google Earth.

Preliminary results indicate that the urban population share can vary considerably across different definitions, ranging from 11-35% in Tanzania and 20-60% in Nigeria. Nigeria is often found to be more urbanized than Tanzania, although this ordering is reversed for two definitions. In Tanzania, most urban definitions applied are relatively conservative, as compared with the administrative categorization. Thus, it is rare to see segments of the population re-categorized from rural to urban when using another definition, though some officially urban households are recategorized as rural. In Tanzania, these definitions sometimes lead to different conclusions regarding the concentration of poverty in rural versus urban areas, alternately indicating that poverty is increasingly a rural or urban problem. They also produce somewhat diverging stories regarding trends in welfare and farm income shares in the rural population. For example, while most definitions suggest that a growing share of rural homes now access electricity, this time trend disappears when using an economy-focused definition. The pace at which rural households have been shifting away from agriculture (a key component of structural transformation) is estimated to be twice as fast when relying on a night lights urban definition, as compared to the local administrative definition. At the same time, these different definitions paint a consistent picture of the rural farming population in terms of levels of engagement with input and output markets. This reflects the manner in which definitional decisions especially affect the categorization of non-farming (though possibly rural) households.

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR TECHNICAL REPORT #362
Publication Date: 01/16/2019
Type: Data Analysis
Abstract

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:

Sub-Populations

  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

Characteristics
In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Technical Report #330
Publication Date: 11/22/2017
Type: Data Analysis
Abstract

A large and growing body of scholarship now suggests that many household outcomes, including children’s education and nutrition, are associated with a wife’s bargaining power and control over household decision-making. In turn, bargaining power in a household is theorized to be driven by a wife’s financial and human capital assets – in particular the degree to which these assets contribute to household productivity and/or to the wife’s exit options. This paper draws on the detailed Farmer First dataset in Tanzania and Mali to examine husband and wife reports of a wife’s share of decision-making authority in polygynous households, where multiple wives jointly contribute to household productivity, and where exit options for any single wife may be less credible. We find that both husbands and wives assign less authority to the wife in polygynous households relative to monogamous households. We also find that a wife’s assets are not as strongly associated with decision-making authority in polygynous versus monogamous contexts.  Finally, we find that responses to questions on spousal authority vary significantly by spouse in both polygynous and monogamous households, suggesting interventions based on the response of a single spouse may incorrectly inform policies and programs.

Code
EPAR Technical Report #335
Publication Date: 11/21/2017
Type: Data Analysis
Abstract
EPAR has developed Stata do.files for the construction of a set of agricultural development indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). We are sharing our code and documenting our construction decisions both to facilitate analyses of these rich datasets and to make estimates of relevant indicators available to a broader audience of potential users. 
Code, Code, Code, Code
EPAR Technical Report #317
Publication Date: 11/16/2017
Type: Data Analysis
Abstract

In this report we analyze three waves nationally-representative household survey data from Kenya, Uganda, Tanzania, Nigeria, Pakistan, Bangladesh, India, and Indonesia to explore sociodemographic and economic factors associated with mobile money adoption, awareness, and use across countries and over time. Our findings indicate that to realize the potential of digital financial services to reach currently unbanked populations and increase financial inclusion, particular attention needs to be paid to barriers faced by women in accessing mobile money. While policies and interventions to promote education, employment, phone ownership, and having a bank account may broadly help to increase mobile money adoption and use, potentially bringing in currently unbanked populations, specific policies targeting women may be needed to close current gender gaps.

Code
EPAR Technical Report #356
Publication Date: 10/31/2017
Type: Data Analysis
Abstract

According to AGRA's 2017 Africa Agriculture Status Report, smallholder farmers make up to about 70% of the population in Africa. The report finds that 500 million smallholder farms around the world provide livelihoods for more than 2 billion people and produce about 80% of the food in sub-Saharan Africa and Asia. Many development interventions and policies therefore target smallholder farm households with the goals of increasing their productivity and promoting agricultural transformation. Of particular interest for agricultural transformation is the degree to which smallholder farm households are commercializating their agricultural outputs, and diversifying their income sources away from agriculture. In this project, EPAR uses data from the World Bank's Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) to analyze and compare characteristics of smallholder farm households at different levels of crop commercialization and reliance on farm income, and to evaluate implications of using different criteria for defining "smallholder" households for conclusions on trends in agricultural transformation for those households.

Code
EPAR Technical Report #358
Publication Date: 09/30/2017
Type: Data Analysis
Abstract

Crop yield is one of the most commonly used partial factor productivity measures. It is used to estimate the ratio of quantity of crop output, generally measured in kilograms or tons, to a sole input, land area. Ongoing EPAR research explores the policy implications of measuring yield by area planted versus area harvested. In this brief, we consider implications for crop yield estimates of other decisions in how to construct yield measures from household survey microdata. Using data from three waves of the Tanzania National Panel Survey (TNPS) and two waves of the Ethiopia Socioeconomic Survey (ESS), both part of the World Bank’s Living Standards Measurement Study-Integrated Surveys on Agriculture (LSMS-ISA), we calculate separate crop yield estimates across survey waves following different decisions on disaggregating yield by gender(s) of the plot decision-maker(s) and for pure-stand and mixed stand (intercropped) plots, on including crop production from multiple growing seasons, and on how to treat outlier observations.

Code
EPAR Technical Report #339
Publication Date: 09/28/2017
Type: Data Analysis
Abstract

An ongoing stream of EPAR research considers how public good characteristics of different types of research and development (R&D) and the motivations of different providers of R&D funding affect the relative advantages of alternative funding sources. For this project, we seek to summarize the key public good characteristics of R&D investment for agriculture in general and for different subsets of crops, and hypothesize how these characteristics might be expected to affect public, private, or philanthropic funders’ investment decisions. 

Code
EPAR Technical Report #326
Publication Date: 06/01/2017
Type: Data Analysis
Abstract

By examining how farmers respond to changes in crop yield, we provide evidence on how farmers are likely to respond to a yield-enhancing intervention that targets a single staple crop such as maize. Two alternate hypotheses we examine are: as yields increase, do farmers maintain output levels but change the output mix to switch into other crops or activities, or do they hold cultivated area constant to increase their total production quantity and therefore their own consumption or marketing of the crop? This exploratory data analysis using three waves of panel data from Tanzania is part of a long-term project examining the pathways between staple crop yield (a proxy for agricultural productivity) and poverty reduction in Sub-Saharan Africa. 

Code