Policy and Economic Considerations for Public Goods Provision: Agricultural R&D Funding From the Private, Public, and Philanthropic Sectors

C. Leigh Anderson, Travis W. Reynolds, Pierre E. Biscaye

Evans School Policy Analysis & Research Group (EPAR)

Daniel J. Evans School of Public Policy and Governance
University of Washington
Overview

> Purpose & Background
> Methods
> Funders’ Incentives and Capabilities for R&D Public Goods Investment
> Agricultural R&D Investments by Sector
> Discussion of Findings
Purpose

Frame a discussion around R&D funding as a function of alternative funding objectives

> Assume purely private goods are supplied by the market and that the private sector will fund goods with some public good characteristics if profitable

> How would a global social planner allocate public and philanthropic sector spending across the residual – the remaining “underprovision” of goods that span the spectrum of “global” and “local” and “public” and “private”...
Agricultural R&D “Publicness”

> R&D produces knowledge that can be used repeatedly - **non-rival**

> Results of R&D may fall under patent or IP protections - **some excludability** incentivizes private sector agricultural R&D investment

> Knowledge from basic R&D may have wide potential applications - “**global**” public goods
Is Agricultural R&D Undersupplied?

> Agricultural R&D largely funded by the public sector (Pardey et al., 2016; ASTI, 2012; Beintema et al., 2012)

> Research intensity ratios - for every $100 of agricultural GDP in a high-income country, roughly $3 is spent on research by public and private funders, an amount that has increased steadily over time, while in low-income countries, for every $100 of agricultural GDP only $0.54 is spent on research (Pardey et al., 2016)

https://www.asti.cgiar.org/cgiar-data/cgiar#5

Sources: Beintema et al., 2012; Røttingen et al., 2013
Research Questions

From the perspective of a global social planner, an efficient allocation of global R&D funding would match private, public, and philanthropic resources to R&D types consistent with each funder’s objectives.

> How do characteristics of agricultural R&D and preferences of private, public, and philanthropic providers of R&D funding affect the relative advantages of alternative sectors?

> How do trends in agricultural R&D funding from public, private, and philanthropic sources for different categories of crops compare to expectations based on those hypothesized advantages?
Methods

> Draw on literature to summarize incentives for R&D public good investment by sector (private, public, philanthropic) and public good characteristics of categories of agricultural R&D

> Develop hypotheses for how a global planner would efficiently allocate funding by sector for:
 • Agriculture R&D in general
 • R&D for cash crops and commodity grains
 • R&D for “orphan” crops and subsistence crops
 • R&D outputs with higher positive social externalities (e.g., vegetative or OPV crops)

> Compare funding expectations against trends in private, public, and philanthropic investment in categories of agricultural R&D
A Model of R&D Funding Considerations

\[E(\text{NPV}) = \left[\text{prob. to mrkt} \left(\frac{(Pm(1 - (0 \leq pov_j \leq 1)) * Qm) - Cm}{(1 + r)^t} \right) + SOC(0 \leq s_j \leq 1) \right] * (0 \leq \text{loc}_{Rj} \leq 1) \]

\[- \sum_{i} \left[\text{prob. (phase}_i \mid \text{phase}_{i-1} \right) \left(\frac{(C_{ij}(SC_{ij})*Q_{ij})}{(1 + r)^{t_{ij}}} \right) * (0 \leq \text{loc}_{Cj weight} \leq 1) \right] \]

> **Financial returns:** \((Pm * Qm) - Cm\)

 • Function of excludability, market size, market share, & consumer willingness-to-pay

> **Social benefits:** \(SOC\) e.g., food security

> **Location of $ flows:** \(\text{loc}\), nation of consumers, employment, and investment

> **Probability of getting R&D to market:** conditional on completing all research phases

> **Estimated time to market:** \(t\) and \(r\) (discounting)

> **Costs of completing phases of R&D:** \(C\), with \(SC\) sunk or specialized costs; conditional on completing previous research phase
Model Data & Assumptions

> We know Q* (the total desired public good or service, in this case R&D outputs)

> By sector: We have some reasonable assumptions behind funder preferences and priorities (e.g. importance of financial returns vs. social benefits, location of benefits/expenditures, discounting)

> By R&D type (e.g., genetic improvement, in-trust plant GRs, ecosystem preservation, enabling policies):
 • We can make some reasonable estimates for the probability, time, and costs of successfully moving from basic science to market
 • We can rank the R&D output by its expected financial returns and its contribution to livelihood, nutritional, environmental or other goals
Hypothesized Funder Weighting

<table>
<thead>
<tr>
<th>Preferences</th>
<th>Private</th>
<th>Philanthropic</th>
<th>Public (National)</th>
<th>Public (Multilateral)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Returns</td>
<td>Necessary</td>
<td>Not necessary</td>
<td>Valued to large degree</td>
<td>Valued to some degree</td>
</tr>
<tr>
<td>Social Benefits</td>
<td>Not accounted for</td>
<td>Necessary</td>
<td>Valued to some degree</td>
<td>Valued to large degree</td>
</tr>
<tr>
<td>Location of Returns</td>
<td>Indifferent</td>
<td>Some preference but below social benefits</td>
<td>Prefer domestic returns</td>
<td>Some preference but below social returns</td>
</tr>
<tr>
<td>Location of Expenditures</td>
<td>Indifferent</td>
<td>Indifferent</td>
<td>Prefer domestic expenditures</td>
<td>Indifferent (may depend on funding restrictions)</td>
</tr>
<tr>
<td>Probability of Success (Risk)</td>
<td>Very important</td>
<td>Less important</td>
<td>Important</td>
<td>Important</td>
</tr>
<tr>
<td>Time to Market & Cost of Capital</td>
<td>Very Important</td>
<td>Less Important</td>
<td>Important</td>
<td>Important</td>
</tr>
<tr>
<td>Subsidized Price (Poverty Goals)</td>
<td>No price subsidies provided</td>
<td>Willing to subsidize to large degree</td>
<td>Willing to subsidize to some degree</td>
<td>Willing to subsidize to some degree</td>
</tr>
<tr>
<td>Sunk Costs</td>
<td>Prefer to minimize</td>
<td>Tolerable</td>
<td>Tolerable to some degree</td>
<td>Tolerable</td>
</tr>
</tbody>
</table>
Model Data & Assumptions

> We know Q^* (the total desired public good or service, in this case R&D outputs)

> By sector: We have some reasonable assumptions behind funder preferences and priorities

> By R&D type (e.g., genetic improvement, in-trust plant GRs, ecosystem preservation, enabling policies):
 - We can make some reasonable estimates for the probability, time, and costs of successfully moving from basic science to market
 - We can rank the R&D output by its expected financial returns and its contribution to livelihood, nutritional, environmental or other goals
Example: Assigning Weights to Research Areas

Trade-offs for Crop Genetic Advances

<table>
<thead>
<tr>
<th>Importance assumed to vary by sector weighting (e.g. CGIAR goals) and public good or service</th>
<th>Trade-offs in SSA</th>
<th>Maize</th>
<th>Rice</th>
<th>Sorghum</th>
<th>Millet</th>
<th>Wheat</th>
<th>Cassava</th>
<th>Forests/NRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poverty among target population</td>
<td>50% in SSA</td>
<td>55%</td>
<td>58% of poor</td>
<td>insurance crop</td>
<td>7.5%</td>
<td>higher income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market size/ Importance to livelihoods (> 300kcal/day)</td>
<td>46%</td>
<td>15%</td>
<td>30%</td>
<td>7.5%</td>
<td>13%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutrition benefits - iron (calories, fat, protein & micronutrients)</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resilience to climate change (temp/precip/CO2)</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimal impact on environment: Land degradation</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water depletion</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water depletion: SA</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: FAOSTAT, USDA, Reynolds et al. (2015), 1=least often mentioned as concern
Example: Allocating Funding for New Crop Genetic Code

Solve for Sector Shares of the Public Good

> Theory suggests that compared to the private sector, the public and philanthropic sectors direct a greater proportion of their agricultural R&D funding toward subsistence and orphan crops.

> But, given the large share that remains to be allocated among the other sectors, how do the philanthropic, national, and multilateral public investors align on priorities & divide the rest?

> Begin by looking at current allocations.
Current Allocations

Data for agricultural R&D funding:

- CGIAR Agricultural Science and Technology Indicators (ASTI) - multiple years
- United States Department of Agriculture (USDA) Economic Research Service
- Reviews and estimates from the literature (e.g., Fuglie et al., 2016; Pardey et al., 2016)
- Publicly-traded company financial statements from U.S. SEC 10-K filings
Focus on large-acre market-oriented crops, in particular corn, soybeans, and wheat, in addition to small-acre cash crops like fruit and vegetables (Fuglie et al., 2016)

Subsistence crops like cassava, pearl millet, and sorghum are characterized by substantially lower levels of private research intensity (CGIAR, 2011; Naseem et al., 2001)
Public Agricultural R&D Funding

Share of spending by country income group

<table>
<thead>
<tr>
<th>Year</th>
<th>Low-income</th>
<th>Middle-income</th>
<th>High-income</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>60</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>1990</td>
<td>50</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>2000</td>
<td>40</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>2008</td>
<td>40</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>2011</td>
<td>40</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>

Source: ASTI, 2017
Pardey et al., 2016
Public R&D Researchers by Crop Category

Source: ASTI Database, 2017 (2014 data)
Philanthropic Agricultural R&D Funding

> Data on philanthropic investments are limited

> Estimates for total philanthropic funding in 2008 range from $245.6 million (Coppard, 2010) to $450 million (Morton, 2010)

> Top five Gates Foundation agricultural R&D grant recipients received $244.2 million from 2003 to 2010 for breeding and delivery of improved seed varieties (Gates Foundation, 2011)

 • Three of these five grants, totaling $99.2 million, focus on R&D for maize and wheat
 • One grant totaling $45 million targets development and delivery of staple crops, including commodity grains and crops that are generally for subsistence only (e.g., sweet potato, beans, millet, and cassava)
 • Largest grant, totaling $100 million, targets capacity building for both public and private breeding programs in 13 Sub-Saharan African countries.
Model Applications: Public Research FTE and Production Value

Source: ASTI Database, 2017
Model Applications: Research FTE and Export Value

Source: ASTI Database, 2017
Findings on Public & Philanthropic Funding

Evidence supports expectations that public R&D focuses relatively more than private sources on subsistence and “orphan” crops and “neglected diseases” with smaller potential financial returns.

> But most public & philanthropic agricultural R&D still targets commodity grains and cash crops, similar to the private sector.

Limitations in R&D spending data, inconsistent metrics and subnational variation.

> Decisions likely vary by funder within each sector, and by public good or service.
Model Extensions:
Changing Patterns in CG Research Funding

CGIAR Funding by Center, 1971-2012 (ASTI data)
Model Extensions:
Changing Patterns in CG Research Funding

CGIAR Funding by Center, 1971-2012 (ASTI data)
Model Extensions:
Public Funder Priorities in CG Funding?

United States

China

IRE
CIMMYT
AfricaRice
Bioversity
CIP
IFPRI
ILRI
ICRISAT
ICARDA
WorldAgroforestry
IWMI
ISNAR
CIFOR
CIAT
WorldFish
IITA
Model Extensions: Philanthropic Priorities in CG Funding?

Rockefeller Foundation

Gates Foundation (note y-axis)

Investment (million USD)

Maize Rice Grains & RTB

CIMMYT CIAT IRRI IITA WorldAgroforestry ICRISAT IFPRI AfricaRice ILRI Bioversity CIP ISNAR IWMId CIFOR WorldFish ICARDA

IRRI ICRISAT CIMMYT CIAT IFPRI WorldAgroforestry CIP IITA Bioversity ILRI AfricaRice ISNAR IWMId CIFOR WorldFish ICARDA
Model Extensions: Philanthropic Priorities in CG Funding?

Gates Foundation: 2010-2016

![Bar chart showing investment in various organizations from 2010 to 2016. The chart includes organizations such as IITA, CIMMYT, ILRI, IRRI, CIP, IFPRI, ICARDA, CIAT, ICRAF, CIP, IFPRI, ICARDA, Bioversity, and ISNAR.]
Discussion of Findings

Both public R&D (country specific) and multilaterally funded R&D (CG centers) focus on a mix of commodity grains, cash crops, subsistence and “orphan” crops with smaller potential returns.

> But both public & philanthropic multilateral support for agricultural R&D exhibits strong regional preferences / donor preferences.

Limitations in comparability of R&D benefits flows further impedes recommendations surrounding the efficient allocation of new funds.

> Yield gaps, hunger, malnutrition, poverty metrics, gender all invoked in justifying funding choices.
A Model of R&D Funding Considerations

\[E(\text{NPV}) = \left[\text{prob. to mrkt} \left(\frac{\left[(Pm \ (1 - (0 \leq pov_j \leq 1)) \times Qm \right] - Cm \ + \ SOC \ (0 \leq s_j \leq 1)}{1 + r)^t} \right) \right] \times (0 \leq \text{loc}_{R_j} \leq 1) \]

\[- \sum_i \left[\text{prob (phase}_i \ | \ \text{phase}_i-1) \left(\frac{C_{ij}(SC_{ij}) \times Q_{ij}}{(1 + r)^{t_{ij}}} \right) \right] \times (0 \leq \text{loc}_{C_j \ \text{weight}} \leq 1) \]

> **Financial returns:** \((Pm \times Qm) - Cm\)
 * Function of excludability, market size, market share, & consumer willingness-to-pay

> **Social benefits:** \(SOC\) e.g., food security

> **Location of $ flows:** \(loc\), nation of consumers, employment, and investment

> **Probability of getting R&D to market:** conditional on completing all research phases

> **Estimated time to market:** \(t\) and \(r\) (discounting)

> **Costs of completing phases of R&D:** \(C\), with \(SC\) sunk or specialized costs; conditional on completing previous research phase
Thank you.
EPAR uses an innovative student-faculty team model to provide rigorous, applied research and analysis to international development stakeholders. Established in 2008, the EPAR model has since been emulated by other UW schools and programs to further enrich the international development community and enhance student learning.

Please direct comments or questions about this research to Principal Investigators C. Leigh Anderson and Travis Reynolds at epar.evans.uw@gmail.com.