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Abstract 
This paper develops a data-driven algorithm that simultaneously selects the polynomial 
specification and bandwidth combination that minimizes the predicted mean squared error 
at the threshold of a discontinuity. It achieves this selection by evaluating the combinations 
of specification and bandwidth that perform best in estimating the next point in the 
observed sequence on each side of the discontinuity. Our method learns the optimal 
specification. We illustrate this method by applying it to data with a simulated treatment 
effect to show its efficacy. We contrast the performance of this algorithm with those 
commonly used in the literature, notably Imbens and Kalyanaraman (2012) and Calonico, 
Cattaneo, and Titiunik (2014). Using simulated treatment effects applied to real data, we 
find that our method reduces squared prediction errors by over 20% and substantially 
reduces the rate of false negative results for modest-sized treatment effects. Finally, we 
utilize our method to reexamine the results of notable papers using RDD methods. We 
illustrate how and why use of this method produces different results from these published 
studies. 
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Next: Machine Learning for Regression Discontinuity 
 
Introduction 
 
The fundamental question that must be answered by a researcher using the regression 
discontinuity design is: what is the most likely value of the dependent variable, 𝑦, as the 
policy assignment variable, 𝑥, reaches the threshold, 𝑇 , that determines program 
participation? The researcher must estimate these values of 𝑦 coming from each side of the 
threshold and, for the purpose of inference, construct a confidence interval around the 
discontinuity in these estimates. These are prediction problems.  
 
The current wisdom in this field is that one should use low-order polynomials, most 
commonly linear regressions of 𝑦 on 𝑥, within narrow ranges near the threshold. There are 
strong arguments for this approach. Higher-order polynomials may have a stronger fit to 
the whole of the data on a given side of the threshold, but their out-of-sample predictive 
power may be weak and standard errors on their predictions at the threshold, 𝑦̂֓ =յ , may 
be quite large. Gelman and Imbens (2019) note that “we do not have good methods for 
choosing that order in a way that is optimal for the objective of a good estimator for the 
causal effect of interest” and “optimizing some global goodness-of-fit measure … is not closely 
related to the research objective of causal inference” (p. 447). Given these concerns, 
Calonico, Cattaneo, and Titiunik (2014) note, “the local linear RD estimator … is perhaps 
the preferred and most common choice in practice” (p. 912). Further, small bandwidths are 
warranted as the fundamental relationship between 𝑦 and 𝑥 may be different close to the 
threshold than it is far away. In such circumstances, values of 𝑦 and 𝑥 far away from the 
threshold may yield estimated polynomials with poor estimation of 𝑦 for 𝑥 = 𝑇 .  
 
The two most commonly used approaches in applied research are based on the methods 
articulated in Imbens and Kalyanaraman (2012) and Calonico, Cattaneo, and Titiunik 
(2014), which are henceforth labeled IK and CCT.1  IK present an algorithm that selects 
the optimal bandwidth under asymptotic mean squared error loss for regression 
discontinuity analyses using a local linear regression. CCT develops an alternative 
bandwidth selection procedure and robust confidence intervals that correct for bias 

 
1 These papers have 2,262 and 1,833 citations, respectively, per Google Scholar as of 
October 2020. 
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introduced by the bandwidth selection process.2 While these approaches are attractive and 
data-driven, they do not solve the problem of identifying the optimal polynomial order and 
they leave it to user discretion as to what kernel to use in weighting the regression. The 
default settings on software developed to implement these popular methods assume that 
the user wants to implement a local linear regression with a triangular weight. Guidance is 
often provided to the user to try a quadratic specification, different kernels, and smaller 
and larger bandwidths. Yet, this suggestion yields uncertainty as to what is the preferred 
specification and in practice users treat the default settings as optimal and other choices, if 
considered at all, as robustness checks.  
 
A local linear or quadratic specification may yield a poor approximation if the underlying 
relationship between 𝑦 and 𝑥 is of higher order, and higher-order specifications are likely to 
require larger bandwidths for reliable parameter estimation. Finally, these standard 
approaches do not consider whether a simple or weighted average of prior observation near 
the threshold (i.e., a zero-order polynomial) might produce a more precise and accurate 
prediction. 
 
This paper introduces a fully data-driven procedure for selecting the optimal polynomial 
specification, bandwidth, and kernel. Our algorithm “learns” the optimal bandwidth by 
evaluating the performance of wider and narrower widths in making out-of-sample 
predictions of 𝑦 and adjusts the preferred bandwidth accordingly. It selects the optimal 
specification and kernel by choosing the combination that is predicted to have the lowest 
squared prediction error at the threshold based on learned experience.  
 
Through a series of simulations, we show that our algorithm yields estimates of the local 
average treatment effects (LATEs) that have smaller mean squared errors than the IK and 
CCT methods using default settings of popular software using their methods. We then apply 

 
2 Suppose that one uses a local linear regression applied to data generated by a process that 
is not globally linear. The broader the bandwidth, the more bias is introduced as the linear 
regression captures more of the nonlinear global process. However, a broader bandwidth 
reduces variance in the estimates of the parameters as it captures more data. Algorithms, 
such as IK, that minimize mean squared error, which equals bias-squared plus variance, will 
trade bias that comes from a larger bandwidth with variance that is reduced by a larger 
bandwidth. The CCT approach addresses the bias that results from such bandwidth 
selection procedures. 
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our method to set of recent papers in the economics and public policy literatures to show 
how and whether using this method alters the findings. 
 
The “Next” Algorithm 
 
The ideas that motivates our algorithm are that (a) our goal is to predict 𝑦 when 𝑥 reaches 
threshold 𝑇  (i.e., 𝑦̂֓ =յ ) and (b) our data provide us experience with how well the next value 
of 𝑦 can be predicted as a function of the prior series of observations of (𝑥, 𝑦). We let this 
experience teach us the best method to use the prior series of observations, i.e., the best 
bandwidth, kernel weights, and polynomial order. 
 
The following is an outline of the steps that are used in our algorithm, and this outline is 
explained in detail below. Step 1: Identify the best bandwidth, 𝑏֓, for predicting 𝑦֓ for a 
particular value of 𝑥 on the left side of the threshold, using a selected polynomial order and 
kernel. Repeat this procedure for all but the first several 𝑥 values on the left side of the 
threshold. Step 2: Remove noise by smoothing this series of bandwidths, 𝑏̆֓, and predict the 
best bandwidth at the threshold, 𝑏̆̂֓=յ . Step 3: Using the series of smoothed-bandwidth 
values, predict 𝑦̂֓  at various levels of 𝑥, and compute squared prediction errors, 𝑠֓ =

(𝑦֓ − 𝑦̂֓ )ϵ. Step 4: Smooth this series of squared prediction errors, 𝑠 ̆֓ , and predict the 
squared prediction error at the threshold, 𝑠 ̆̂֓=յ . Step 5: Repeat Steps 1-4 for different 
polynomial orders and kernels and identify the polynomial order and kernel that produces 
the minimum predicted squared prediction error at the threshold. Step 6: Repeat Steps 1-5 
for the right side of the threshold. Step 7: Use the optimal polynomial, kernel, and 
bandwidth for each side of the threshold and standard ordinary least squares methods for 
identifying the magnitude of the discontinuity in 𝑦 at the threshold. 
 
Step 1 
We begin by sorting the data by 𝑥 from smallest to largest. If multiple observations have 
the same value of 𝑥, we collapse the data by 𝑥, creating the average value of 𝑦 for each 𝑥, 
and creating a frequency weight that is equal to the number of observations sharing that 𝑥 
value. All subsequent regressions used in finding the optimal bandwidth and resulting 
prediction errors are frequency weighted. In the applications discussed below, we evaluate 
the performance of polynomial orders from 1 to 3 and we evaluate the performance of the 
uniform, triangular, and Epanechnikov kernels.3 Let 𝑝 denote the maximum polynomial 

 
3 In the Stata code that we developed for users to implement this algorithm (Long and 
Rooklyn, 2020), we allow the user to vary the desired minimum and maximum orders that 
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order that will be considered. We first seek to predict 𝑦 for the 𝑝+4th distinct value of 𝑥. 
For illustration purposes, suppose 𝑝=1, and thus we would begin with a prediction of 𝑦 for 
the 5th observation of 𝑥. Suppose that the first five observations, (𝑥, 𝑦), are as follows: (12, 
7), (15, 11), (21,10), (23,15), and (27,9). We measure bandwidths in terms of the percentage 
of prior observations that are included in the prediction of the next observation. We consider 
three possible bandwidths to predict the 5th value of 𝑦: 100% (i.e., using the first four 
observations), 75% (i.e., using just the 2nd, 3rd, and 4th observations), and 50% (i.e., using 
just the 4th and 5th observations). Using a uniform kernel and a linear regression applied to 
these observations, these three bandwidths would yield the following predictions of the 5th 
value of 𝑦: 16.8, 13.5, and 19.4 The best bandwidth for the 5th observation is the one that 
produces a prediction of 𝑦 that is closest to the 5th observed value of y. In this case, since 
the 5th value of 𝑦 is 9, the best bandwidth, 𝑏֓=ϵϨ, would be 75%. 
 
Step 2:  
We assume that the observed series of optimal bandwidths, 𝑏֓, is equal to a latent “true” 
bandwidth (that evolves as 𝑥 increases) plus noise (produced by noise in 𝑦֓). We attempt 
to remove the noise and thereby recover the latent bandwidth series, 𝑏̆֓, by using an 
exponential-weighted average.5 We define 𝑏̆֓ = 𝛼գո 𝑏֓ + (1 − 𝛼գո )𝑏̆֓−, where 𝑥- denotes 

 
are considered and allow the user to set the kernel type rather than have it chosen by the 
data. 
4 For the triangular and Epanechnikov weights, we slightly extend the range so that each 
observation gets positive weight. So, for example, when computing the triangular 
weighted average of the first four observations, we extend the range by five-fourths. More 
generally, we extend the range by 𝑒 = (𝑐 + 1)/𝑐, where 𝑐 is number of distinct 
observations that we wish to include. The triangular weights are given by (1 −

(𝑥ֈռ֓ − 𝑥) / (𝑒 × (𝑥ֈռ֓ − 𝑥ֈք։))), where 𝑥ֈք։ and 𝑥ֈռ֓ are the minimum and 
maximum values of 𝑥 amongst the observations being given weight. Note that this 
formulation accounts for irregular spacing of the values of 𝑥. For our four observations, 
whose values of 𝑥 are 12, 15, 21, and 23, the corresponding triangular weights would be 
0.20, 0.42, 0.85, and 1. The Epanechnikov weights are given by 0.75 × ५1 −

ॕ(𝑥ֈռ֓ − 𝑥) / (𝑒 × (𝑥ֈռ֓ − 𝑥ֈք։))ॖ
ϵ
६. For our four observations, the corresponding 

Epanechnikov weights would be 0.27, 0.50, 0.73, and 0.75. With this extender, as the 
number of observations that are included in the weighted average goes to infinity, the 
weight on the first observation in the included series goes to 0. 
5 If we were to assume that the observed optimal bandwidth series is generated by a 
random walk plus noise, then exponential smoothing generates optimal forecasts (Muth, 
1960). However, note that it is not appropriate to assume a pure random walk as the 
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the value of 𝑥 of the prior observation and 𝛼 is the smoothing parameter.6 Higher values of 
𝛼գո  would indicate that the movement of 𝑏̆֓ is highly responsive to new information 
contained within 𝑏֓. We let the data reveal the optimal value of the smoothing parameter. 
To do this, we evaluate the performance of a variety of candidate 𝛼գո ’s and choose the 
𝛼գո  with the best performance.7 Performance is measured by the extent to which the 
resulting forecast of the next level of the latent bandwidth predicts the observed next 
bandwidth. Here we are assuming that a deviation would reflect noise. The 𝛼գո  with the 
best performance is the one that minimizes mean squared forecast error. Once 𝛼գո  has 
been selected, we can produce a weighted average of all of the observed optimal values of 
𝑏֓ on the left side of the threshold to predict the best bandwidth for predicting 𝑦 at the 
threshold, 𝑏̆̂֓=յ . It is this bandwidth that will ultimately be used in Step 7 to identify the 
causal effect of the discontinuity on outcomes. 
 
Step 3:  
In this step, we begin the process of generating results to aid in selecting between possible 
candidate polynomial orders and kernels. Using the series of smoothed-bandwidth values, 
we predict 𝑦 at various levels of 𝑥, 𝑦 ̂֓ , and we compute squared prediction errors, 𝑠֓ =

(𝑦֓ − 𝑦̂֓ )ϵ. If this particular polynomial order and kernel is a good performer, then it will 
have generated good predictions of the observed series of 𝑦 values. Note that this process 
produces an out-of-sample forecast of 𝑦. For example, 𝑦̂֓ =ϯϵ is generated only from 
observations of (𝑥, 𝑦) for 𝑥 < 32. As a consequence, high-order polynomials will tend to 
perform poorly in generating out-of-sample predictions for precisely the reasons articulated 

 
bandwidth is bounded (e.g., we cannot use more than 100% of the prior observations). 
Nonetheless, we assume that, as a practical matter, using this exponential smoothing is 
sufficient for our purposes. 
6 Our algorithm adds an additional element to capture non-uniform spacing between the 
observed values of 𝑥. To do this, we construct weights for each observation that are equal 
to 𝛼(φ−(֓−֓)/(֓−֓)), where 𝑥 and 𝑥 respectively denote the lowest and highest observed 
values of 𝑥 in the series of optimal bandwidths, 𝑏֓, on the left (or right) side of the 
threshold. We then take a weighted average of prior values of 𝑏֓ to yield 𝑏̆֓.  
7 We evaluate the following 44 candidate levels of 𝛼𝐵𝑊: 1 (which produces no smoothing), 
0.96, 0.92, …, 0.12, 0.10, …, 0.02, 0.01, 0.005, 0.0025, 0.001, 0.0004, 10-04, 10-05, 10-06, 10-7, 
10-9, 10-11, 10-14, 10-17, 10-20, and 10-23. Appendix Figure 1 shows the resulting possible 
weighting schemes that could be applied to 𝑏֓ in the range 𝑥=1 to 𝑥=16 so as to generate 
𝑏̆֓=φϩ. This figure reveals that this set of candidate weighting schemes produces a fairly 
comprehensive coverage of the possible weighting schemes. 
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by Gelman and Imbens (2019). Yet, if higher-orders are indeed helpful in making accurate 
out-of-sample predictions, then they will be selected by the algorithm. 
 
Step 4:  
Since we want to select the polynomial order and kernel that performs best at the threshold, 
we again proceed to eliminate idiosyncratic noise in the series of 𝑠֓ so as to recover the 
latent value, 𝑠 ̆֓ , which is projected, out-of-sample, to the threshold, 𝑠 ̆̂֓=յ . We again use 
exponential smoothing, but this time we set the smoothing parameter, 𝛼մձզ, to 0.02 as a 
default setting. As shown by the dashed line in Appendix Figure 1, this level of smoothing 
will place one-third of the total weight on the rightmost 10% of observations (assuming 
observations are uniformly distributed) and will place two-thirds of the total weight on the 
rightmost quarter of observations. That is, the bulk of the selection of the best order/kernel 
comes from performance making out-of-sample predictions of observations near to the 
threshold. 
 
In the language of machine learning, 𝛼մձզ is a “hyperparameter” as it is not learned by the 
data. We cannot allow this parameter to be selected by the data and vary across polynomial 
orders and kernels because it would create an unfair competition between these 
specifications. If we were to do so, then a particular order/kernel might end up being selected 
simply because it put less weight on a particular observation that is an outlier and hard to 
predict.8 Our choice of 𝛼մձզ = 0.02 is arbitrary and the user might want to select different 
values of 𝛼մձզ to yield robustness checks. 
 
Step 5:  
Next, we repeat Steps 1-4 for different polynomial orders and kernels. For each, we compute 
𝑠 ̆̂֓=յ . We identify the polynomial order and kernel that produces the smallest 𝑠 ̆̂֓=յ  and this 
combination of order and kernel is then used for the left side of the threshold in generating 
the causal impact estimates.  
 
Step 6:  
We then start over and repeat Steps 1-5 for the right side of the threshold. In this case, we 
are moving in the opposite direction, right to left, i.e., moving from the higher values of 𝑥 
leftward towards the threshold. This procedure generates an optimal bandwidth, polynomial 

 
8 If we allow 𝛼մձզ to be learned and separately estimated for each kernel/polynomial 
order, it is possible for a particular kernel / polynomial order to have a lower value of 𝑠 ̆̂֓=յ  
despite have higher values of 𝑠֓ than an alternative specification at every distinct value of 
𝑥. 
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order, and kernel for the right side, and the algorithm allows these choices to be different 
in all dimensions from the choices made on the left side. While this might sound 
unconventional, it is reasonable as the treatment may have affected the shape of the 
relationship between 𝑥 and 𝑦, which would yield different optimal choices for the right and 
left sides.  
 
Step 7:  
The final step is to run an ordinary least squares regression to generate the LATE estimate. 
This regression is applied to the original dataset (i.e., not collapsed by distinct values of 𝑥) 
using the span of data within the selected bandwidths and with the data-chosen kernel 
weights and polynomial order. We center the threshold at 0 by generating 𝑥 ̃= 𝑥 − 𝑡. The 
resulting regression would look like the following assuming that the selected optimal 
polynomial orders are 2 for the left and 3 for the right sides: 

𝑦 = 𝛽խЈ𝐿 + 𝛽խφ𝐿𝑥̃ + 𝛽խϵ𝐿𝑥̃ϵ + 𝛽ճЈ𝑅 + 𝛽ճφ𝑅𝑥̃ + 𝛽ճϵ𝑅𝑥̃ϵ + 𝛽ճϯ𝑅𝑥̃ϯ + 𝜀 

𝐿 is an indicator for 𝑥̃ < 0 and 𝑅 is an indicator for 𝑥̃ ≥ 0 (assuming that those with 𝑥̃ = 0 
have the same treatment status as those on the right side of the threshold). The estimate 
effect of the treatment is given by the difference between the left- and right-side intercepts, 
i.e., 𝛽ճЈ − 𝛽խЈ. Robust standard errors are used for inference. 
 
Illustration of the Next Algorithm 
 
Table 1 illustrates the Next algorithm. In this illustration, we show hypothetical data for 
17 observations on the left side of a threshold, which is at 𝑥=75. We illustrate the results 
assuming that we are currently considering a first-order polynomial (i.e., a linear regression) 
with a uniform kernel, and further suppose that first-order is the maximum polynomial 
order that we are willing to consider, thus 𝑝=1, and we would begin with a prediction of 𝑦 
for the 5th observation of 𝑥. As shown in the 5th row, and discussed above, the bandwidth 
that performs best in predicting the 5th observation is 75%.  
 
We then assess the performance of this bandwidth in predicting the 6th observation. We run 
a linear regression using 75% of the first five observations – rounded, this results in using 
four observations, specifically the 2nd, 3rd, 4th, and 5th observations. The resulting regression 
line is shown in blue in the bottom-left quadrant of Figure 1. Extrapolating this regression 
line gives our prediction of the next observation, and this prediction is shown by the left-
most open circle on Figure 1. Returning to Table 1, we see that our out-of-sample prediction 
for the 6th observation of 𝑦 is 11.0, whereas the actual value of 𝑦 is 22, producing a squared 
prediction error, 𝑠, of 121.  
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We repeat this process for each of the subsequent observations on the left side of the 
threshold. Figure 2 illustrates the resulting optimal bandwidths, squared prediction errors, 
and the smoothing of these series. The final value of the smoothed squared prediction error 
series, 61.6, gives our prediction of the squared prediction error at the threshold 𝑠 ̆̂֓=յ  
assuming we were to use a linear regression composed of 59% of the observations on the left 
side, which is the final value of the smoothed optimal bandwidth, and with uniform kernel 
weights. If this value, 61.6, is lower than all values of 𝑠 ̆̂֓=յ  using other polynomial orders 
or other kernels, then this is the optimal specification that would be chosen by this algorithm 
for use in producing causal estimates. 
 
Comparison of the Next Algorithm with the approaches of Ludwig 
and Miller (2007) and Imbens and Lemieux (2008) 
 
Our method bears similarity to the approaches in Ludwig and Miller (2007) and Imbens 
and Lemieux (2008), which are described as follows by Lee and Lemieux (2010, p. 321): 
 

… Jens Ludwig and Douglas Miller (2007) and Imbens and Lemieux (2008) have 
proposed a “leave one out” procedure aimed specifically at estimating the regression 
function at the boundary. The basic idea behind this procedure is the following. 
Consider an observation 𝑖. To see how well a linear regression with a bandwidth ℎ 
fits the data, we run a regression with observation 𝑖 left out and use the estimates 
to predict the value of 𝑌  at 𝑋 = 𝑋ք. In order to mimic the fact that RD estimates 
are based on regression estimates at the boundary, the regression is estimated using 
only observations with values of 𝑋 on the left of 𝑋ք (𝑋ք − ℎ ≤ 𝑋 < 𝑋ք) for 
observations on the left of the cutoff point (𝑋ք < 𝑐). For observations on the right 
of the cutoff point (𝑋ք ≥ 𝑐), the regression is estimated using only observations with 
values of 𝑋 on the right of 𝑋ք (𝑋ք < 𝑋 ≤ 𝑋ք + ℎ).  
 
Repeating the exercise for each and every observation, we get a whole set of predicted 
values of 𝑌  that can be compared to the actual values of 𝑌 . The optimal bandwidth 
can be picked by choosing the value of ℎ that minimizes the mean square of the 
difference between the predicted and actual value of 𝑌 . 

 

Our Next procedure contains several differences from these approaches. We allow the 
bandwidth to vary on the two sides of the discontinuity. We base bandwidth choice on a 
forecast of the mean squared error at the threshold, rather than selecting the bandwidth 
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that minimizes the mean squared error of the whole series of 𝑦 values. Finally, we select 
polynomial order and kernel weights based on this forecast.   
 
Simulation and Comparison of the Next Algorithm with IK and 
CCT 
 
To contrast the performance of our Next algorithm with the IK and CCT approaches, we 
used data from Jacob et al. (2012). These data include 7th and 8th grade math assessments 
from a balanced panel of 2,767 students and Jacob et al. applied a simulated treatment 
effect to evaluate RD methods. The raw data are plotted in Appendix Figure 2. We evaluate 
simulated treatment effects at 54 values of the pretest score, ranging from 189.5 to 242.5 
(the 2nd and 98th percentiles of the pretest score distribution), and these points are shown 
as tick marks on the x-axis in this figure. We add a simulated treatment to the posttest 
score for students above the threshold. We use the following 37 simulated treatment effects, 
where 𝜎 denotes one standard deviation of the posttest score distribution and 𝜃 denotes 
(student’s pretest score minus the threshold) / standard deviation of the pretest scores: 
 
  

LATE = 0 
LATE = 

0.2𝜎 
LATE = 

0.5𝜎 
 

LATE = 𝜎 
LATE =  
−0.2𝜎 

LATE =  
−0.5𝜎 

LATE = 
−𝜎 
 

        
Flat: 0 0.2𝜎 0.5𝜎 𝜎 −0.2𝜎 −0.5𝜎 −𝜎 

 
Growing 
Linearly: 

0.2𝜎𝜃, 0.5𝜎𝜃, 𝜎𝜃, 
−0.2𝜎𝜃, −0.5𝜎𝜃, −𝜎𝜃 

 

0.2𝜎 
+0.2𝜎𝜃 

0.5𝜎 
+0.5𝜎𝜃 

𝜎 
+𝜎𝜃 

−0.2𝜎 
−0.2𝜎𝜃 

−0.5𝜎 
−0.5𝜎𝜃 

−𝜎 
−𝜎𝜃 

Growing 
Exponentially: 

0.2𝜎𝜃2, 0.5𝜎𝜃2, 𝜎𝜃2, 
−0.2𝜎𝜃2, −0.5𝜎𝜃2, −𝜎𝜃2  

0.2𝜎 
+0.2𝜎𝜃2 

0.5𝜎 
+0.5𝜎𝜃2 

𝜎 
+𝜎𝜃2 

−0.2𝜎 
−0.2𝜎𝜃2 

−0.5𝜎 
−0.5𝜎𝜃2 

−𝜎 
−𝜎𝜃2 

Fading:  0.2𝜎/2𝜃 0.5𝜎/2𝜃 𝜎/2𝜃 −0.2𝜎/2𝜃 −0.5𝜎/2𝜃 −𝜎/2𝜃 

 
In the case of “Flat” treatment effects, it is assumed that every observation to the right of 
the discontinuity gets the same treatment effect, which vary in size from -1 to 1 s.d. 
“Growing Linearly” are simulated effects that grow linearly as 𝑥 moves away from 𝑇  – in 
this case, the treatment effect not only has an intercept effect (assuming LATE≠0), but 
also changes the slope of the relationship between 𝑥 and 𝑦. For “Growing Exponentially”, 
we assume the effect grows by the square of the standard deviation increase of 𝑥 above 𝑇 , 
whereas for “Fading”, we simulate an effect that is cut in half for every standard deviation 
increase of 𝑥 above 𝑇 .  This set of possible effects fairly comprehensively captures the ways 
in which a treatment could affect the relationship between 𝑥 and 𝑦. 
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We compare the performance of the Next algorithm to the IK and CCT approaches. For 
this analysis, we use the following software packages, which were run on Stata: rd written 
by Nichols (2011), which is used to estimate the IK algorithm, and rdrobust written by 
Calonico, Cattaneo, Farrell, and Titiunik (2018), which is used to estimate the CCT 
algorithm.9 Using default settings, rd estimates the LATE using a triangular-kernel 
weighted linear regression for observations within the IK bandwidths. Using default 
settings, rdrobust also uses a triangular-kernel weighted linear regression with “MSE-
optimal point estimation using a common bandwidth on both sides of the cutoff” (CCTF, 
p. 400) and uses a local quadratic regression to correct bias.   
 
With 54 locations of the possible treatment, 37 different simulated effects, and 3 methods 
tested, we produce a total of 5,994 treatment estimates. Figure 3 graphically displays the 
estimates and confidence intervals for the first of these possible treatment effects, i.e., where 
the treatment effect is a flat 0.10 For this case, the Next algorithm outperforms the IK and 
CCT approaches with root mean squared errors of 1.44, 1.80, and 2.11 respectively. This 
result is generally held as shown in panel A of Table 2. Across the 5,994 treatment estimates, 
we find significantly lower average root mean squared errors for our method (1.11), 
outperforming IK by 21% (1.35) and CCT by 41% (1.57). This better performance is 
achieved for all types of effects (i.e., Flat, Growing Steadily, Growing Linearly, Growing 
Exponentially, and Fading). 
 
Panel B of Table 2 shows that each method, as expected, produces a false rejection of the 
true (simulated) LATE about 5% of the time using a 95% confidence interval. Yet, as shown 
in Panel C of Table 2, the Next algorithm has much lower rates of false negatives. When 
the absolute value of the simulated treatment effect is 0.2𝜎, our Next algorithm rejects this 
LATE in 30% of the cases, whereas the false rejection rates for IK and CCT are 57% and 
61% respectively. This means that use of such standard methods is much more prone to fail 
to reject zero when the true LATE is modest. When the true (simulated) LATE is 
moderately large (0.5𝜎 or −0.5𝜎), we find a false negative rate of 3% for our Next algorithm 
versus 6% for IK and 12% for CCT. When the true (simulated) LATE is large (𝜎 or −𝜎), 
we find no false negatives using any of the three methods. 
 
Having now (hopefully) established the utility of our method, in the next two sections we 
apply the method to two prominent papers in the RD literature. 
 

 
9 We use the versions of these packages that were available in May 2020. 
10 Appendix Figure 2 shows the full set of estimates. 
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Applying the Next Algorithm to Prior Published Studies 
 
Next Algorithm Applied to Lee (2008) 
 
Lee (2008) evaluates the impact of party incumbency on the probability that the incumbent 
party will retain the district’s seat in the next election for the U.S. House of Representatives. 
In this analysis, 𝑥 is defined as the Democratic vote share in year 𝑡 minus the vote share of 
the “Democrats strongest opponent (virtually always a Republican)” (p. 686) and 𝑦 is 
defined as the Democratic Party’s vote share in year 𝑡 + 1.11  The key identifying assumption 
is that there is a modest random component to the final vote share (e.g., rain on Election 
Day) that cannot be fully controlled by the candidates and that, effectively, “whether the 
Democrats win in a closely contested election is...determined as if by a flip of a coin” (p. 
684). Lee used a 4th order polynomial in 𝑥 for each side of the discontinuity while restricting 
the data to an arbitrarily selected bandwidth of −0.25 < 𝑥 < 0.25, i.e., excluding cases 
where the winning party won by more than 25 percentage points. Lee concluded that the 
impact of incumbency on vote share was 0.077 (s.e. = 0.011). That is, being the incumbent 
raised the expected vote share in the next election by 7.7 percentage points.   
 
This study was reexamined by Lee and Lemieux (2010) and Imbens and Kalyanaraman 
(2011). Lee and Lemieux estimate the treatment effect by using polynomials ranging from 
order zero (i.e., the average of prior values) up to a 6th order polynomial with the same 
order polynomial estimated for both sides of the discontinuity and with bandwidths 
ranging from 1% to 100% (i.e., using all of the data). For each bandwidth, they identify 
the “optimal order of the polynomial” by selecting the one with the lowest value of the 
Akaike Information Criterion (AIC). They identify an optimal bandwidth “by choosing 
the value of h that minimizes the mean square of the difference between the predicted and 
actual value of Y” (p. 321).12 As shown in Table 2 of their paper, using the optimal 
bandwidth, which is roughly 5%, and the optimal order of the polynomial for this 

 
11 Lee’s data comes from U.S. Congressional election returns from 1946 to 1998. We 
obtained these data on January 2, 2015 from 
http://economics.mit.edu/faculty/angrist/data1/mhe/lee. 
12 While this model selection procedure has the nice feature of selecting the specification 
and bandwidth “optimally”, it has two limitations: (1) it suggests that a particular order of 
the polynomial and bandwidth be used on both sides of the discontinuity, and (2) the AIC 
evaluates the fit of the polynomial at all values of 𝑥, and doesn’t attempt to evaluate the 
fit of the polynomial as 𝑥 approaches the threshold, which is more appropriate for the RDD 
treatment effect estimation. 
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bandwidth (quadratic), the estimated effect of incumbency on the Democratic party’s vote 
share in year 𝑡 + 1 is 0.100 (s.e. = 0.029). Imbens and Kalyanaraman found that the 
optimal bandwidth for a linear specification on both sides was 0.29 and using this 
bandwidth/specification produced an estimate of the treatment effect of 0.080 (s.e. = 
0.008).    
 
Lee’s data poses a computational challenge for us as there are 2,740 (3,819) observations on 
the left (right) side of the discontinuity. Computing the best bandwidth and squared 
prediction errors for this number of outcomes takes a good deal of time – processing time 
increases by roughly the square of the number of observations. We hasten the process by 
coarsening the data into 200 bins, averaging 𝑥 and 𝑦 within each bin. Note that this binning 
is only used to identify the optimal bandwidths, kernels, and polynomial orders; once 
identified, we run the regression applying the chosen specification on the full, unbinned 
data. The user should be aware, however, that binning may yield bandwith, kernel, and 
polynomial order choices that are somewhat less than optimal, with greater coarsening 
leading to less optimal calculations.  
  
The results of our Next method are shown in Figure 4. We find that the best specification 
uses a linear specification on both sides, applied to data in the range −0.37 < 𝑥 < 0.17 and 
with an Epanechnikov (uniform) kernel weight applied to the left (right) side. Using this 
specification yields our estimate of treatment effect as 0.084, which is slightly larger than 
Lee’s, and our estimate has a much smaller standard error (s.e. = 0.001).   
 
We additionally re-examine the result shown in Figure 2a of Lee (2008), where 𝑦 is an 
indicator variable that equals 1 if the Democratic Party won the election in that district in 
year 𝑡 + 1.13 Lee applies “a logit with a 4th order polynomial in the margin of victory, 
separately, for the winners and the losers” (Lee, 2001, p. 14) using all of the data on both 
sides of the discontinuity, and finds that incumbency raises the likelihood of the incumbent 
party maintaining the seat by 45.0 percentage points (s.e. = 3.1 pct. pt.). 
 
Given the dichotomous nature of the dependent variable, we adapt the Next algorithm to 
use a logit specification with a polynomial in 𝑥 and an indicator for being above the 
threshold as the independent variables. We again coarsen the data to 200 bins for identifying 
the (nearly) optimal specification. Given that binning results in fractional values of 𝑦 that 
lie in the interval from 0% to 100%, we use a generalized linear model using a logit link 

 
13 The numerical estimates corresponding to this figure are included in Lee (2001). 
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function as recommended by Papke and Woolridge (1996) for modeling proportions. We 
test polynomial orders ranging from 1 to 4. 
 
We find that the best logit specification is linear (quadratic) in 𝑥 on the left (right) side, 
applied to data in the range −0.19 < 𝑥 < 0.37, and with an Epanechnikov kernel weight 
applied to both sides. From this specification, we estimate that the Democratic Party has 
a 14.4% chance of winning the next election if they were barely below 50% on the prior 
election, and a 60.3% chance of winning the next election if they are just to the right of 
the discontinuity. Figure 5 shows the estimated curves. Our estimate of the treatment 
effect (i.e., barely winning the prior election) is 46.0 percentage points (p-value < 0.001) 
pt.), which is slightly larger than Lee’s estimate.   
 
Next Algorithm Applied to Brollo, Nannicini, Perotti, & Tabellini (2013) 
 
Brollo et al. estimate the effect of additional government revenues on political corruption. 
A revenue windfall received by a local government provides a moral hazard that facilitates 
political corruption; “with a larger budget size, the incumbent has more room to grab 
political rents without disappointing rational but imperfectly informed voters” (p. 1760). 
They test this theory using data from Brazil where “transfers to municipalities…change 
exogenously and discontinuously at given population thresholds” (p. 1760). They evaluate 
the average change in frequency and severity of corruption at these thresholds for 1,202 
municipalities utilizing four outcome measures: 
 “Broad corruption” defined as the presence of irregularities, including illegal 

procurement practices, fraud, favoritism, over-invoicing, diversion of funds, and paid 
but not proven expenses. 

 “Narrow corruption” defined as “severe irregularities that are also more likely to be 
visible to voters” (p. 1774), including severe illegal procurement practices, fraud, 
favoritism, and over-invoicing. 

 “Broad corruption funds as a fraction of the total amount of the audited budget.” 
 “Narrow corruption funds as a fraction of the total amount of the audited budget.” 
 
Brollo et al. identify the effect of a revenue windfall on corruption using the discontinuity 
in a global third-order polynomial at the population threshold for receipt of additional 
revenues. In their online appendix, Brollo et al. runs a sensitivity analysis with respect to 
the functional form of the control function in population size. Specifically, they redefine 
the function “as a spline third-order polynomial, as a second-order polynomial (spline or 
not), and a fourth-order polynomial (spline or not)” and conclude that “(a)ll of these 
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robustness exercises support the validity of the results” (p. 1784). In this paper, we 
compare our method to their main findings.   
 
Their reduced form (i.e., intent-to-treat) estimated effects are shown in their Figure 2 
(which we reproduce below as Panel A of Figure 6). They find significant 16.3 and 17.0 
percentage point increases in the likelihood of broad and narrow corruption respectively, 
and significant 2.9 and 1.9 percentage point increases in broad and narrow corruption 
funds as fractions of the total amount of the audited budget respectively.14 For graphical 
display, they use wide population bins that include 250-person intervals. Despite these 
wide bins, these scatterplots show a lot of variability in the underlying relationships 
between population and corruption on either side of the revenue windfall thresholds, 
which makes this an interesting case study for using our method. 
 
In using the Next algorithm, we coarsened the data to 100 bins data for the purposes of 
identifying the optimal specification and the graph of the results, while the regression is 
run on unbinned data. For the first two outcomes, which are dichotomous, we used a logit 
specification, while using an ordinary least squares specification for the latter outcomes. 
Panel B of Figure 6 shows our estimates of the treatment effects using our method. We 
found that a first-order polynomial (linear) was appropriate for both sides of the threshold 
for all four outcomes. Our estimates of the treatment effect are similar to Brollo et al.; we 
find 15.3 and 18.7 percentage point increases in the likelihood of broad and narrow 
corruption respectively, and significant 2.8 and 1.9 percentage point increases in broad 
and narrow corruption funds as fractions of the total amount of the audited budget 
respectively.15  
 
Despite the similarity in impact estimates, there are clear differences in the selected 
bandwidths, with much smaller bandwidths selected by the Next algorithm on the left of 
the discontinuity. Such differences could be of more substantive importance in another 
case as we show in the next example. 
 
Next Algorithm Applied to Chen, Ebenstein, Greenstone, and Li (2013) 
 
In the appendix, we present the results of applying the Next algorithm to the data in 
Chen et a1. (2013). This paper has received much scrutiny (e.g. Gelman and Zelizer, 

 
14 These numerical estimates are not found in their paper, but rather were generated from 
the code and data they provide online with their article. 
15 The p-values for these four estimates are: 0.00, 0.04, 0.12, and 0.02. 
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2015) due to Chen et al.’s use of a global cubic polynomial specification with a treatment 
discontinuity. Our Next algorithm is not well suited to these data as there are only 12 
observations on the left and 10 observations on the right side of the threshold. 
Consequently, there is not sufficient scope for Next to “learn” the optimal bandwidth. 
This suggests that Next is best suited when there are a larger number of distinct values of 
𝑥 on each side of the discontinuity. 
 
Conclusion 
 
This paper presents a new algorithm for identifying the optimal bandwidth, polynomial 
order, and kernel weight for use in estimating local average treatment effects in a regression 
discontinuity design. We name this algorithm “Next” to emphasize that RDD estimation is 
a forecasting problem where the goal is to predict 𝑦 as 𝑥 approaches the threshold from 
each side of the discontinuity. We show that the Next algorithm has lower mean squared 
prediction errors and lower rates of false negatives when confronted with a variety of types 
of simulated effects when compared with the IK and CCT procedures, which assume (as 
default settings in popular statistical software packages) a local linear specification with the 
same bandwidth and kernel weights used on both sides of the discontinuity. We illustrate 
the algorithms use when applied to notable papers in the RDD literature. We note that this 
algorithm is best suited when there are a large number of distinct values of 𝑥 on each side 
of the threshold as such thick data gives the Next algorithm sufficient observations with 
which to “learn” the optimal specification.  
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Table 1:  
Illustration of the Next Algorithm for the Left-Side of a Threshold at 𝒙=75 

 

 
 
Notes: The “optimal bandwidth” denotes the share of the prior span of 𝑥 (between the value 
of 𝑥 for the first observation and the value of 𝑥 of the nearest observation) that produces 
the minimum squared error in predicting 𝑦 for this outcome using a linear regression (i.e., 
first-order polynomial) with a uniform kernel weight applied to the prior observations in 
this span. Smoothing is done using an exponential weighted average of the series to that 
point.

Optimal 
bandwidth 
to predict 

this 
observation

Smoothed 
optimal 

bandwidth

Out-of-
sample 

prediction 
of y using 
smoothed 
optimal 

bandwidth

Squared 
prediction 

error

Smoothed 
squared 

prediction 
error

Observation
1 12 7
2 15 11
3 21 12
4 23 15
5 27 9 0.75 0.75
6 32 22 1.00 0.88 11.0 121 121
7 33 27 0.33 0.69 19.7 73 96
8 38 19 1.00 0.78 28.8 96 96
9 43 31 0.50 0.71 26.7 18 63
10 44 29 0.89 0.75 29.8 1 43
11 48 37 0.30 0.66 32.9 17 35
12 51 42 0.36 0.61 38.6 12 28
13 56 61 0.25 0.55 43.5 307 119
14 60 54 0.85 0.60 57.0 21 87
15 64 64 0.21 0.54 62.2 3 60
16 68 60 1.00 0.61 68.8 159 92
17 73 74 0.50 0.59 72.2 3 62

𝑥 𝑦 𝑏௫ 𝑏෰௫ 𝑦ො௫ 𝑠௫ �̆�௫
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Table 2:  
Comparison of the Performance of the Methods 

 

 
 

  

Panel A: Root Mean Squared Error
Coef. (s.e.) p-value Coef. (s.e.) p-value Coef. (s.e.) p-value Coef. (s.e.) p-value Coef. (s.e.) p-value

Constant (i.e., mean for Long and Rooklyn) 1.112 (0.028) 0.000 1.045 (0.062) 0.000 1.041 (0.048) 0.000 1.221 (0.050) 0.000 1.114 (0.069) 0.000
IK (i.e., difference between IK and LR) 0.237 (0.039) 0.000 0.299 (0.088) 0.001 0.301 (0.067) 0.000 0.140 (0.071) 0.050 0.228 (0.097) 0.015
CCTF (i.e., difference between CCTF and LR) 0.458 (0.039) 0.000 0.521 (0.088) 0.000 0.525 (0.067) 0.000 0.356 (0.071) 0.000 0.454 (0.097) 0.000

Number of Estimates
Type of Simulated Effect

Panel B: Falsely Reject LATE
Coef. (s.e.) p-value Coef. (s.e.) p-value Coef. (s.e.) p-value Coef. (s.e.) p-value Coef. (s.e.) p-value

Constant (i.e., mean for Long and Rooklyn) 0.043 (0.004) 0.000 0.043 (0.007) 0.000 0.035 (0.009) 0.000 0.044 (0.009) 0.000 0.049 (0.010) 0.000
IK (i.e., difference between IK and LR) -0.001 (0.006) 0.871 0.000 (0.010) 1.000 0.005 (0.013) 0.719 -0.005 (0.013) 0.727 -0.005 (0.014) 0.736
CCTF (i.e., difference between CCTF and LR) -0.008 (0.006) 0.224 -0.009 (0.010) 0.414 0.002 (0.013) 0.857 -0.009 (0.013) 0.485 -0.014 (0.014) 0.312

Number of Estimates
Size of Simulated Effect

Panel C: Fail to Reject Null when LATE ≠0
Coef. (s.e.) p-value Coef. (s.e.) p-value Coef. (s.e.) p-value Coef. (s.e.) p-value

Constant (i.e., mean for Long and Rooklyn) 0.109 (0.011) 0.000 0.296 (0.023) 0.000 0.030 (0.012) 0.061 0.000
IK (i.e., difference between IK and LR) 0.102 (0.015) 0.000 0.273 (0.033) 0.000 0.032 (0.017) 0.000 0.000
CCTF (i.e., difference between CCTF and LR) 0.136 (0.015) 0.000 0.317 (0.033) 0.000 0.090 (0.017) 0.014 0.000

Number of Estimates
Size of Simulated Effect

3,888 1,296 1,296 1,296
LATE≠0 |LATE|=0.2sd |LATE|=0.5sd |LATE|=1.0sd

5,994 2,106 1,296 1,296 1,296
All LATE=0 |LATE|=0.2sd |LATE|=0.5sd |LATE|=1.0sd

1,944
Growing Linearly

972
Fading

1,944
Growing Expontially

5,994
All

1,134
Flat
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Figure 1: 
Illustration of the Next Algorithm for the Left Side of a Threshold at 𝒙=75 

 
 

Figure 2: 
Illustration of the Smoothing of the Bandwidth and the Squared Prediction 

Error 
 

Panel A: Bandwidth Smoothing Panel B: Squared Prediction Error Smoothing 
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Figure 3: 
Comparison of Methods Given a Simulated Treatment that had No Effect 

 
Note: The figure shows 54 simulated impact estimates (where the simulated impact is a flat 0, i.e., no effect). The threshold of the simulated treatment 
is moved from 189.5 to 242.5 and the treatment effect is to the right of the threshold. IK’s method is estimated using Stata software and the rd command 
written by Nichols(2011). CCT’s method is estimated using Stata software and the rdrobust command written by Calonico, Cattaneo, Farrell, and 
Titiunik (2018). LR’s method is estimated using Stata software and the next command written by Long and Rooklyn (2020). Next’s specification search 
was conducted across polynomial orders ranging from 1 to 3.  
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Figure 4:  
Next Algorithm Applied to Figure 4a in Lee (2008) 

 
Panel A: Reprint of Lee’s Figure 4a Panel B: Next Algorithm Results 

 
Note: Next’s specification search was conducted across polynomial orders ranging from 0 to 6. Data were placed into 200 bins for the purpose of 
specification search and for the graph above. Data on the left (right) side are weighted by an Epanechnikov (uniform) kernel. The specification is linear 
in 𝑥 on both sides.  
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Figure 5:  
Next Algorithm Applied to Figure 2a in Lee (2008) 

 
Panel A: Reprint of Lee’s Figure 2a Panel B: Next Algorithm Results 

 

 
Note: Next’s logit specification search was conducted across polynomial orders ranging from 1 to 4. Data were placed into 200 bins for the purpose of 
specification search and for the graph above. Data on both sides are weighted by an Epanechnikov kernel. The specification is linear (quadratic) in 𝑥 
on the left (right) side. 

 
  



26 
 

Figure 6: 
Next Algorithm Applied to Estimates in Brollo et al. (2013) 

 
Panel A: Replication of Brollo et al.’s Figure 2 Panel B: Next Algorithm Results 

 
Note: Replication of Brollo et al.’s results were achieved by applying the code and data they provide online with their article. Next’s specification search 
was conducted across polynomial orders ranging from 1 to 3. Logits were used for the first two outcomes, “Broad corruption” and “Narrow corruption”, 
while linear specifications were used for the latter two outcomes. Data were placed into 200 bins for the purpose of specification search and for the 
graph above. Next identified that the optimal specification is linear in 𝑥 for both sides of the threshold for all four outcomes. The following kernel 
weights were selected by the algorithm for the left (right) sides: Epanechnikov (uniform) for “Broad corruption”; uniform (uniform) for “Narrow 
corruption”; Epanechnikov (uniform) for “Broad fraction of the amount”; and triangular (Epanechnikov) for “Narrow fraction of the amount”. 
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Online Appendices for 

Next: Machine Learning for Regression 
Discontinuity 

 
Next Algorithm Applied to Chen, Ebenstein, Greenstone, and Li (2013) 
 
Our final case study is a replication of a prominent paper by Chen et al. (2013) that 
alarmingly concludes that “an arbitrary Chinese policy that greatly increases total 
suspended particulates (TSPs) air pollution is causing the 500 million residents of 
Northern China to lose more than 2.5 billion life years of life expectancy” (p. 12936).  
This policy established free coal to aid winter heating of homes north of the Huai River 
and Qinling Mountain range. Chen et al. used the distance from this boundary as the 
assignment variable with the treatment discontinuity being the border itself. 
 
Chen et al. use a global cubic polynomial specification with a treatment jump at the 
discontinuity for each outcome and their results are shown in Panels A and B of Figure 7. 
They estimate that being north of the boundary significantly raises TSP by 248 points 
and significantly lowers life expectancy by 5.04 years. Yet, Gelman and Zelizer (2015) 
critique these findings by noting, “(t)he large, statistically significant estimated treatment 
effect at the discontinuity depends on the functional form employed. …the headline claim, 
and its statistical significance, is highly dependent on a model choice that may have a 
data-analytic purpose, but which has no particular scientific basis” (pp. 3-4). 
  
We have attempted to replicate these results with the results shown in panels A and B.  
Unfortunately, the primary data are proprietary and not easy to obtain; permission for 
their use can only be granted by the Chinese Center for Disease Control.1  Rather than 
use the underlying primary data, we are treating the data shown in their Figures 2 and 3 
as if it were the actual data.  To do so, we have manually measured the 𝑥 and 𝑦 
coordinates of each data point in these figures as well as the diameter of each circle 
(where the circle’s area is proportional to the population of localities represented in the 
bin).2 Our replication attempt is shown in Panels C and D of Figure 7. We obtain similar 
results, although the magnitudes are smaller and less significant; our replication of their 
specification produces estimates that being north of the boundary raises TSP by 178 
points (p-value 0.069) and insignificantly lowers life expectancy by 3.94 years (p-value 
0.389).  

 
1 Personal communication with Michael Greenstone, March 16, 2015. 
2 We have taken two separate measurements for each figure and use the average of these 
two measurements for the 𝑥 and 𝑦 coordinates and the median of four measurements of 
the diameter of each circle.   
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We apply our Next method to estimate these treatment effects, with results graphically 
shown in panels E and F of Figure 7. Frankly, our method is not well suited to these data 
as there are few distinct values of 𝑥 on each side of the discontinuity with which to learn 
the data-generating process. Our specifications and treatment estimates are radically 
different from Chen et al. For TSP, the Next algorithm suggests a linear specification 
with triangular kernel weights on both sides, using data from the latter 68% of the span of 
the data on the left (8 observations), and the data in the first 28% of the span of the data 
on the right (5 observations). Based on this specification, we estimate that the treatment 
caused TSP to be reduced by 54 (s.e.=3), which is far below the point estimate of our 
replication, 178. For Life Expectancy, the Next algorithm suggests a quadratic (cubic) 
specification for the left (right) side, with uniform kernel weights on both sides, using all 
of the data on the left (12 observations), and the data in the first 60% of the span of the 
data on the right (10 observations). Based on this specification, we estimate that the 
treatment caused Life Expectancy to be reduced by 8.6 years (s.e.=1.2), which is a 
stunning and opposite conclusion from Chen et al. To be clear, given the sparseness of the 
data, we do not believe that our Next algorithm is appropriate for this analysis and we do 
not believe that our results should be taken as revealing good causal estimates.  
 
The fragility of the Chen et al. results should not be surprising given a visual inspection of 
the scatterplot, which does not reveal a clear pattern to the naked eye. We agree with 
Gelman and Zelizer’s (2015) critique that the result “indicates to us that neither the 
linear nor the cubic nor any other polynomial model is appropriate here. Instead, there are 
other variables not included in the model which distinguish the circles in the graph” (p. 
4). 
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Appendix Figure 1:  
Illustration of the Comprehensiveness of the Series of Weights Produced  

Using Various Tested Candidate Values of 𝜶ۚۅ  (and the Set Value of 𝜶ۖۈۓ) 

 
Note: The 44 lines shown in this figure correspond to 44 different levels of 𝛼գո  that are tested, including 1, 
0.96, 0.92, …, 0.12, 0.10, …, 0.02, 0.01, 0.005, 0.0025, 0.001, 0.0004,        10-04, 10-05, 10-06, 10-7, 10-9, 10-11, 10-14, 
10-17, 10-20, and 10-23. The dashed line corresponds to the value of 𝛼մձզ that is set as a default (i.e., 0.02).  
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Appendix Figure 2: 
Raw Data from Jacob et al. (2012) Used in Evaluating Performance of Next 

Algorithm for Estimating Simulated Treatment Effects 

  
Note: Tick marks along the 𝑥-axis show the locations of thresholds for which simulated treatment effects are 
applied to students on the right of the threshold. 
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Appendix Figure 3:  
Comparison of Methods Given Simulated Treatments of Various Sizes and Shapes 

Panel A: Treatment Effect = 0 

 
Panel B: Treatment Effect = 0.2𝜎 

 
Panel C: Treatment Effect = 0.5𝜎 
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Appendix Figure 3: Continued 
 

Panel D: Treatment Effect = 𝜎 

 
Panel E: Treatment Effect = -0.2𝜎  

 
Panel F: Treatment Effect = -0.5𝜎 
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Appendix Figure 3: Continued 
 

Panel G: Treatment Effect = −𝜎 

 
Panel H: Treatment Effect = 0.2𝜎𝜃 

 
Panel I: Treatment Effect = 0.5𝜎𝜃 
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Appendix Figure 3: Continued 
 

Panel J: Treatment Effect = 𝜎𝜃 

 
Panel K: Treatment Effect = 0.2𝜎2𝜃 

  
Panel L: Treatment Effect = 0.5𝜎2𝜃 
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Appendix Figure 3: Continued 
 

Panel M: Treatment Effect = 𝜎2𝜃

Panel N: Treatment Effect = −0.2𝜎𝜃 

 
Panel O: Treatment Effect = −0.5𝜎𝜃 
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Appendix Figure 3: Continued 
 

Panel P: Treatment Effect = −𝜎𝜃 

 
Panel Q: Treatment Effect = −0.2𝜎2𝜃  

 
Panel R: Treatment Effect = −0.5𝜎2𝜃 
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Appendix Figure 3: Continued 
 

Panel S: Treatment Effect = −𝜎2𝜃 

 
Panel T: Treatment Effect = 0.2𝜎 + 0.2𝜎𝜃   

 
Panel U: Treatment Effect = 0.2𝜎 + 0.2𝜎2𝜃  
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Appendix Figure 3: Continued 
 

Panel V: Treatment Effect = 0.2𝜎/2𝜃 

 
Panel W: Treatment Effect = 0.5𝜎 + 0.5𝜎𝜃   

 
Panel X: Treatment Effect = 0.5𝜎 + 0.5𝜎2𝜃  

  



13 
 

Appendix Figure 3: Continued 
 

Panel Y: Treatment Effect = 0.5𝜎/2𝜃 

 
Panel Z: Treatment Effect = 𝜎 + 𝜎𝜃   

 
Panel AA: Treatment Effect = 𝜎 + 𝜎2𝜃   
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Appendix Figure 3: Continued 
 

Panel AB: Treatment Effect = 𝜎/2𝜃

Panel AC: Treatment Effect = −0.2𝜎 − 0.2𝜎𝜃 

 
Panel AD: Treatment Effect = −0.2𝜎 − 0.2𝜎2𝜃  
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Appendix Figure 3: Continued 
 

Panel AE: Treatment Effect = −0.2𝜎/2𝜃

Panel AF: Treatment Effect = −0.5𝜎 − 0.5𝜎𝜃   

 
Panel AG: Treatment Effect = −0.5𝜎 − 0.5𝜎2𝜃  
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Appendix Figure 3: Continued 
 

Panel AH: Treatment Effect = −0.5𝜎/2𝜃 

 
Panel AI: Treatment Effect = −𝜎 − 𝜎𝜃   

 
Panel AJ: Treatment Effect = −𝜎 − 𝜎2𝜃   
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Appendix Figure 3: Continued 
 

Panel AK: Treatment Effect = −𝜎/2𝜃 

 
 

Note: Each figure shows 54 simulated impact estimates. The threshold of the simulated treatment is moved 
from 189.5 to 242.5 and the treatment effect is to the right of the threshold. The simulated LATE is shown 
by the light blue line in each figure. IK’s method is estimated using Stata software and the rd command 
written by Nichols(2011). CCT’s method is estimated using Stata software and the rdrobust command written 
by Calonico, Cattaneo, Farrell, and Titiunik (2018). LR’s method is estimated using Stata software and the 
next command written by Long and Rooklyn (2020). Next’s specification search was conducted across 
polynomial orders ranging from 1 to 3. 
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Appendix Figure 4: 
Next Algorithm Applied to Estimates in Chen et al. (2013) 

 
Panel A: Reprint of Chen et al.’s Figure 2 Panel C: Replication of Chen et al.’s Figure 2 Panel E: Next Algorithm Results 

 
  

   
Panel B: Reprint of Chen et al.’s Figure 3 Panel D: Replication of Chen et al.’s Figure 3 Panel F: Next Algorithm Results 

 
  

   
Note: Replication of Chen et al.’s results was attempted by hand measurement of the location and sizes of circles in Panels A and B. Next’s specification search was 
conducted across polynomial orders ranging from 1 to 3. For Panel E, data on both sides are weighted by a triangular kernel and the specification is linear in 𝑥 on 
both sides. For Panel F, data on both sides are weighted by a uniform kernel and the specification is quadratic (cubic) in 𝑥 on the left (right) side. 


