Research Topics

EPAR TECHNICAL REPORT #362
Publication Date: 01/16/2019
Type: Data Analysis
Abstract

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:

Sub-Populations

  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

Characteristics
In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Presentation #281
Publication Date: 08/12/2014
Type: Data Analysis
Abstract

This research project examines the traits of Tanzanian farmers living in five different farming system-based sub-regions: the Northern Highlands, Sukumaland, Central Maize, Coastal Cassava, and Zanzibar. We conducted quantitative analysis on data from the Tanzania National Panel Survey (TNPS). We complimented this analysis with qualitative data from fieldwork conducted in the summer of 2011 and September 2013 to present a quantitatively and qualitatively informed profile of the “typical” agricultural household’s land use patterns, demographic dynamics, and key issues or production constraints in each sub-region.

EPAR Presentation #280
Publication Date: 08/12/2014
Type: Data Analysis
Abstract

This poster presentation summarizes research on changes in crop planting decisions on the extensive and intensive margin in Tanzania, with regards to changes in agricultural land that a farmer has available and area planted in the context of smallholders and farming systems. We use household survey data from the Tanzania National Panel Survey (TNPS), part of the World Bank’s Living Standards Measurement Study–Integrated Surveys on Agriculture (LSMS – ISA) to test how much the agricultural land available to households changes, how much farmers change the proportion of land decidated to growing priority crops, and how crop area changes vary with changes in landholding. We find that almost half of households had a change of agricultural land area of at least half a hectare from 2008-2010. Smallholder farmers on average decreased the amount of available land between 2008 and 2010, while non-smallholder farmers increased agricultural land area during that time period, but that smallholder households planted a greater proportion of their agricultural land than nonsmallholders. Eighty percent of households changed crop proportions from 2008 to 2010, yet aggregate level indicators mask household level changes.

EPAR Research Brief #242
Publication Date: 01/08/2014
Type: Data Analysis
Abstract

The purpose of this analysis is to provide a measure of marketable surplus of maize in Tanzania. We proxy marketable surplus with national-level estimates of total maize sold, presumably the surplus for maize producing and consuming households. We also provide national level estimates of total maize produced and estimate “average prices” for Tanzania which allows this quantity to be expressed as an estimate of the value of marketable surplus. The analysis uses the Tanzanian National Panel Survey (TNPS) LSMS – ISA which is a nationally representative panel survey, for the years 2008/2009 and 2010/2011. A spreadsheet provides our estimates for different subsets of the sample and using different approaches to data cleaning and weighting. The total number of households for Tanzania was estimated with linear extrapolation based on the Tanzanian National Bureau of Statistics for the years 2002 and 2012. The weighted proportions of maize-producing and maize-selling households were multiplied to the national estimate of total households. This estimate of total Tanzanian maize-selling and maize-producing households was then multiplied by the average amount sold and by the average amount produced respectively to obtain national level estimates of total maize sold and total maize produced in 2009 and 2011.

EPAR Technical Report #201
Publication Date: 09/12/2012
Type: Data Analysis
Abstract

This brief explores how two datasets – The Tanzania National Panel Survey (TZNPS) and the TNS-Research International Farmer Focus (FF) – predict the determinants of inorganic fertilizer use among smallholder farmers in Tanzania by using regression analysis. The (TZNPS) was implemented by the Tanzania National Bureau of Statistics, with support from the World Bank Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA) team and includes extensive information on crop productivity and input use. The FF survey was funded by the Bill and Melinda Gates Foundation and implemented by TNS Research International and focuses on the on the behaviors and attitudes of smallholder farmers in Tanzania. The two datasets produce relatively comparable results for the primary predictors of inorganic fertilizer use: agricultural extension and whether or not a household grows cash crops. However, other factors influencing input use produce results that vary in magnitude and direction of the effect across the two datasets. Distinct survey instrument designs make it difficult to test the robustness of the models on input use other than inorganic fertilizer. This brief uses data inorganic fertilizer use, rather than adoption per se. The TZNPS did not ask households how recently they began using a certain product and although the FF survey asked respondents how many new inputs were tried in the past four planting seasons, they did not ask specifically about inorganic fertilizer.

EPAR Research Brief #179
Publication Date: 07/23/2012
Type: Data Analysis
Abstract

This brief presents our analysis of agricultural input usage in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that a minority of farmers used inputs during the survey period, with 45% of farmers using at least one of inorganic or organic fertilizer, persticides, herbicides, or fungicides, or improved variety seed. A separate appendix includes details on our analyses.

EPAR Technical Report #184
Publication Date: 07/11/2012
Type:
Abstract

This brief provides an overview of the national and zonal characteristics of agricultural production in Tanzania using the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). More detailed information and analysis is available in the separate EPAR Tanzania LSMS-ISA Reference Report, Sections A-G.

EPAR Research Brief #187
Publication Date: 07/11/2012
Type: Data Analysis
Abstract

This brief present our analysis of maize cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that Maize was the most commonly grown crop in Tanzania – cultivated by 83% of farming households. Eighty-two percent of agricultural households reported consuming maize flour during the week prior to being surveyed. About half of those households grew nearly all of the maize they consumed, making maize production an integral part of the farming household diet. A separate appendix includes details on our analyses.

EPAR Research Brief #188
Publication Date: 07/11/2012
Type: Data Analysis
Abstract

This brief presents our analysis of rice paddy cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that Paddy was the sixth most commonly cultivated priority crop. Nationally, paddy was cultivated by 17% of farming households, with male- and female-headed households cultivating paddy at a similar rate.2 Cultivation rates varied widely across zones, ranging from 51% of households in Zanzibar to only 5% in the Northern Zone. A separate appendix includes additional detail on our analyses.

EPAR Research Brief #196
Publication Date: 06/12/2012
Type: Data Analysis
Abstract

This brief presents our analysis of market access in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). The TZNPS asked few direct questions about market access. However, farmers reported information about market participation that sheds light on several important components of the value chain: input markets, including both goods and services; crop storage, processing, and transport; and sales of outputs. A separate appendix includes additional detail on our analyses.