Research Topics

EPAR Technical Report #374
Publication Date: 04/25/2019
Type: Portfolio Review
Abstract
EPAR TECHNICAL REPORT #362
Publication Date: 01/16/2019
Type: Data Analysis
Abstract

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:

Sub-Populations

  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

Characteristics
In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Technical Report #335
Publication Date: 11/21/2017
Type: Data Analysis
Abstract
EPAR has developed Stata do.files for the construction of a set of agricultural development indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). We are sharing our code and documenting our construction decisions both to facilitate analyses of these rich datasets and to make estimates of relevant indicators available to a broader audience of potential users. 
Code, Code, Code, Code
EPAR Technical Report #317
Publication Date: 11/16/2017
Type: Data Analysis
Abstract

In this report we analyze three waves nationally-representative household survey data from Kenya, Uganda, Tanzania, Nigeria, Pakistan, Bangladesh, India, and Indonesia to explore sociodemographic and economic factors associated with mobile money adoption, awareness, and use across countries and over time. Our findings indicate that to realize the potential of digital financial services to reach currently unbanked populations and increase financial inclusion, particular attention needs to be paid to barriers faced by women in accessing mobile money. While policies and interventions to promote education, employment, phone ownership, and having a bank account may broadly help to increase mobile money adoption and use, potentially bringing in currently unbanked populations, specific policies targeting women may be needed to close current gender gaps.

Code
EPAR Technical Report #269
Publication Date: 05/21/2014
Type: Literature Review
Abstract

The commercial alcohol industry in Africa may provide opportunities to increase market access and incomes for smallholder farmers by increasing access to agriculture-alcohol value chains. Despite the benefits of increased market opportunities, the high costs to human health and social welfare from increased alcohol use and alcoholism could contribute to a net loss for society. To better understand the tradeoffs between increased market access for smallholders and societal costs associated with harmful alcohol consumption, this paper provides an inventory of the societal costs of alcohol in Sub-Saharan Africa (SSA). We examine direct costs associated with addressing harmful effects of alcohol and treating alcohol-related illnesses, as well as indirect costs associated with the goods and services that are not delivered as a consequence of drinking and its impact on personal productivity. We identified resources using Google Scholar and the University of Washington libraries, and utilized the Global Burden of Disease (GBD) database by the Institute for Health Metrics and Evaluation (IHME) and the World Health Organization’s Global Information System on Alcohol and Health (GISAH) database. We also utilized FAOSTAT to retrieve raw data on national-level alcohol production and export statistics. We find that hazardous alcohol use contributes to early mortality and morbidity, loss of productivity, property damage, and other social costs and harms for drinkers and those around them. Drinking also affects vulnerable segments of the population disproportionately. Policymakers, local authorities, and donor agencies can use the information presented in this paper to plan and prepare for the higher consumption levels and subsequent social costs that may follow through agricultural development and economic growth in the region.  

EPAR Research Brief #113
Publication Date: 12/20/2010
Type: Portfolio Review
Abstract

This brief analyzes the indicators used by the World Bank in its Project Appraisal Documents (PAD) to measure the outputs and outcomes of 44 Water, Sanitation and Hygiene projects in Africa and Asia from 2000-2010.  This report details the methods used to collect and organize the indicators, and provides a brief analysis of the type of indicators used and their evolution over time. A searchable spreadsheet of the indicators used in this analysis accompanies this summary. We find that some patterns emerge over time, though none are very drastic. The most common group of indicators used by the World Bank are “management” oriented indicators (28% of indicators). Management indicators are disproportionately used in African projects as compared to projects in Asia. Several projects in Africa incorporate indicators relating to legal/regulatory/policy outcomes, while projects in Asia do not. In recent years, the World Bank has used fewer indicators that measure service delivery, health, and education and awareness.