Research Topics

EPAR TECHNICAL REPORT #362
Publication Date: 01/16/2019
Type: Data Analysis
Abstract

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:

Sub-Populations

  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

Characteristics
In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Technical Report #355 and EPAR Research Briefs #355A & #355B & #355C
Publication Date: 06/15/2018
Type: Literature Review
Abstract

Many low- and middle-income countries remain challenged by a financial infrastructure gap, evidenced by very low numbers of bank branches and automated teller machines (ATMs) (e.g., 2.9 branches per 100,000 people in Ethiopia versus 13.5 in India and 32.9 in the United States (U.S.) and 0.5 ATMs per 100,000 people in Ethiopia versus 19.7 in India and 173 in the U.S.) (The World Bank 2015a; 2015b). Furthermore, only an estimated 62 percent of adults globally have a banking account through a formal financial institution, leaving over 2 billion adults unbanked (Demirgüç–Kunt et al., 2015). While conventional banks have struggled to extend their networks into low-income and rural communities, digital financial services (DFS) have the potential to extend financial opportunities to these groups (Radcliffe & Voorhies, 2012). In order to utilize DFS however, users must convert physical cash to electronic money which requires access to cash-in, cash-out (CICO) networks—physical access points including bank branches but also including “branchless banking" access points such as ATMs, point-of-sale (POS) terminals, agents, and cash merchants. As mobile money and branchless banking expand, countries are developing new regulations to govern their operations (Lyman, Ivatury, & Staschen, 2006; Lyman, Pickens, & Porteous, 2008; Ivatury & Mas, 2008), including regulations targeting aspects of the different CICO interfaces. 

EPAR's work on CICO networks consists of five components. First, we summarize types of recent mobile money and branchless banking regulations related to CICO networks and review available evidence on the impacts these regulations may have on markets and consumers. In addition to this technical report we developed a short addendum (EPAR 355a) which includes a description of findings on patterns around CICO regulations over time. Another addendum (EPAR 355b) summarizes trends in exclusivity regulations including overall trends, country-specific approaches to exclusivity, and a table showing how available data on DFS adoption from FII and GSMA might relate to changes in exclusivity policies over time. A third addendum (EPAR 355c) explores trends in CICO network expansion with a focus on policies seeking to improve access among more remote or under-served populations. Lastly, we developed a database of CICO regulations, including a regulatory decision options table which outlines the key decisions that countries can make to regulate CICOs and a timeline of when specific regulations related to CICOs were introduced in eight focus countries, Bangladesh, India, Indonesia, Kenya, Nigeria, Pakistan, Tanzania, and Uganda.

EPAR Technical Report #335
Publication Date: 11/21/2017
Type: Data Analysis
Abstract
EPAR has developed Stata do.files for the construction of a set of agricultural development indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). We are sharing our code and documenting our construction decisions both to facilitate analyses of these rich datasets and to make estimates of relevant indicators available to a broader audience of potential users. 
Code, Code, Code, Code
EPAR Technical Report #317
Publication Date: 11/16/2017
Type: Data Analysis
Abstract

In this report we analyze three waves nationally-representative household survey data from Kenya, Uganda, Tanzania, Nigeria, Pakistan, Bangladesh, India, and Indonesia to explore sociodemographic and economic factors associated with mobile money adoption, awareness, and use across countries and over time. Our findings indicate that to realize the potential of digital financial services to reach currently unbanked populations and increase financial inclusion, particular attention needs to be paid to barriers faced by women in accessing mobile money. While policies and interventions to promote education, employment, phone ownership, and having a bank account may broadly help to increase mobile money adoption and use, potentially bringing in currently unbanked populations, specific policies targeting women may be needed to close current gender gaps.

Code
EPAR Technical Report #180
Publication Date: 10/27/2016
Type: Data Analysis
Abstract

We use OLS and logistic regression to investigate variation in husband and wife perspectives on the division of authority over agriculture-related decisions within households in rural Tanzania. Using original data from husbands and wives (interviewed separately) in 1,851 Tanzanian households, the analysis examines differences in the wife’s authority over 13 household and farming decisions. The study finds that the level of decision-making authority allocated to wives by their husbands, and the authority allocated by wives to themselves, both vary significantly across households. In addition to commonly considered assets such as women’s age and education, in rural agricultural households women’s health and labour activities also appear to matter for perceptions of authority. We also find husbands and wives interviewed separately frequently disagree with each other over who holds authority over key farming, family, and livelihood decisions. Further, the results of OLS and logistic regression suggest that even after controlling for various individual, household, and regional characteristics, husband and wife claims to decision-making authority continue to vary systematically by decision – suggesting decision characteristics themselves also matter. The absence of spousal agreement over the allocation of authority (i.e., a lack of “intrahousehold accord”) over different farm and household decisions is problematic for interventions seeking to use survey data to develop and inform strategies for reducing gender inequalities or empowering women in rural agricultural households. Findings provide policy and program insights into when studies interviewing only a single spouse or considering only a single decision may inaccurately characterize intra-household decision-making dynamics. 

EPAR Technical Report #261
Publication Date: 06/14/2016
Type: Data Analysis
Abstract

Mobile technology is associated with a variety of positive development and social outcomes, and as a result reaching the “final frontier” of uncovered populations is an important policy issue. We use proprietary 2012 data on mobile coverage from Collins Bartholomew to estimate the proportion of the population living in areas without mobile coverage globally and in selected regions and countries, and use spatial analysis to identify where these populations are concentrated. We then compare our coverage estimates to data from previous years and estimates from the most recent literature to provide a picture of recent trends in coverage expansion, considering separately the trends for coverage of urban and rural populations. We find that mobile coverage expansion rates are slowing, as easier to reach urban populations in developing countries are now almost entirely covered and the remaining uncovered populations are more dispersed in rural areas and therefore more difficult and costly to reach. This analysis of mobile coverage trends was the focus of an initial report on mobile coverage estimates. In a follow-up paper prepared for presentation at the 2016 APPAM International Conference, we investigate the assumption that levels of mobile network coverage are related to the degree of market liberalization at the country level.