Research Topics

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR Technical Report #240
Publication Date: 07/28/2016
Type: Data Analysis
Abstract

There is a wide gap between realized and potential yields for many crops in Sub-Saharan Africa (SSA). Experts identify poor soil quality as a primary constraint to increased agricultural productivity. Therefore, increasing agricultural productivity by improving soil quality is seen as a viable strategy to enhance food security. Yet adoption rates of programs focused on improving soil quality have generally been lower than expected. We explore a seldom considered factor that may limit farmers’ demand for improved soil quality, namely, whether farmers’ self-assessments of their soil quality match soil scientists’ assessments. In this paper, using Tanzania National Panel Survey (TZNPS) data, part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA), we compare farmers’ own assessments of soil quality with scientific measurements of soil quality from the Harmonized World Soil Database (HWSD). We find a considerable “mismatch” and most notably, that 11.5 percent of survey households that reported having “good” soil quality are measured by scientific standards to have severely constrained nutrient availability. Mismatches between scientific measurements and farmer assessments of soil quality may highlight a potential barrier for programs seeking to encourage farmers to adopt soil quality improvement activities. 

EPAR Technical Report #337
Publication Date: 06/20/2016
Type: Data Analysis
Abstract

Relative to chronic hunger, seasonal hunger in rural and urban areas of Africa is poorly understood. No estimates are compiled, and limited evidence exists on prevalence, causes, and impacts. This paper contributes to the body of evidence by examining the extent and potential drivers of seasonal hunger using panel data from the Malawi Integrated Household Panel Survey (IHPS). Farmers are commonly thought to use various strategies to smooth consumption, including planting “off-season” crops, investing in post-harvest storage technologies, or generally diversifying farm portfolios including livestock products and/or wild crops. Similarly, when markets are available, farmers may diversify through off-farm income sources in order to purchase food in lean seasons. We investigate whether seasonal hunger – distinct from chronic hunger – exists in Malawi, drawing on two waves of panel data from the LSMS-ISA series. We examine the extent of seasonal hunger, factors associated with variation in seasonal hunger, and how recurring and longer-term seasonal hunger might be associated with various household welfare measures. We find that both urban and rural households report experiencing seasonal hunger in the pre-harvest months, with descriptive evidence suggesting male gender, age, and education of household head, livestock ownership, and storage of crops are associated with lower levels of seasonal hunger. In addition, we find that Malawian households with seasonal hunger harvest crops earlier than average – a short-term coping mechanism that can reduce the crop’s yield and nutritional value, possibly perpetuating hunger.

Code
EPAR Technical Report #336
Publication Date: 03/04/2016
Type: Data Analysis
Abstract

Common estimates of agricultural productivity rely upon crude measures of crop yield, typically defined as the weight harvested of a crop divided by the area harvested. But this common yield measure poorly reflects performance among farm systems combining multiple crops in one area (e.g., intercropping), and also ignores the possibility that farmers might lose crop area between planting and harvest (e.g., partial crop failure). Drawing on detailed plot-level data from the LSMS-ISA in Tanzania, Nigeria, and Ethiopia, we show how various yield measurement decisions affect estimates of smallholder yields for a variety of crops. We consider the effect of measuring production by plot area, area planted, and area harvested, of trimming the top 1% and 2% of values, and of considering different groups of farmers according to total area planted. 

 

EPAR Technical Report #303
Publication Date: 08/10/2015
Type: Data Analysis
Abstract

Common estimates of agricultural productivity rely upon crude measures of crop yield, typically defined as the weight harvested of a crop divided by the area harvested. But this common yield measure poorly reflects performance among farm systems combining multiple crops in one area (e.g., intercropping), and also ignores the possibility that farmers might lose crop area between planting and harvest (e.g., partial crop failure). Drawing on detailed plot-level data from Tanzania’s National Panel Survey, our research contrasts measures of smallholder productivity using production per hectare harvested and production per hectare planted.

An initial analysis (Research Brief - Rice Productivity Measurement) looking at rice production finds that yield by area planted differs significantly from yield by area harvested, particularly for smaller farms and female-headed households. OLS regression further reveals different demographic and management-related drivers of variability in yield gains – and thus different implications for policy and development interventions – depending on the yield measurement used. Findings suggest a need to better specify “yield” to more effectively guide agricultural development efforts.

 

EPAR Technical Report #245
Publication Date: 04/10/2015
Type: Data Analysis
Abstract

A farmer’s decision of how much land to dedicate to each crop reflects their farming options at the extensive and intensive margins. The extensive margin represents the total amount of agricultural land area that a farmer has available in a given year (referred to interchangeably as ‘farm size’ or ‘agricultural land’). A farmer increases land use on the extensive margin by planting on new agricultural land. The intensive margin represents area planted of crops as a proportion of total farm size. A farmer increases the intensive margin by increasing output within a fixed area. This analysis examines cropping patterns for households in Tanzania between 2008 and 2010 using data from the Tanzania National Panel Survey (TZNPS).  This brief describes changes in farm size, total area planted, and area planted of select annual crops to highlight the dynamic nature of farmer’s cropping choices for a sample population of 2,246 agricultural households that reported having any agricultural land in 2008 or 2010. Throughout the brief, we present summary statistics at the national level and compare them with household-level data to show how results vary depending on how the sub-population is defined and how average measures can mask household level changes. We analyze these questions in the context of smallholders (defined as households with total agricultural land area as less than two hectares) and farming systems.  

EPAR Technical Report #201
Publication Date: 09/12/2012
Type: Data Analysis
Abstract

This brief explores how two datasets – The Tanzania National Panel Survey (TZNPS) and the TNS-Research International Farmer Focus (FF) – predict the determinants of inorganic fertilizer use among smallholder farmers in Tanzania by using regression analysis. The (TZNPS) was implemented by the Tanzania National Bureau of Statistics, with support from the World Bank Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA) team and includes extensive information on crop productivity and input use. The FF survey was funded by the Bill and Melinda Gates Foundation and implemented by TNS Research International and focuses on the on the behaviors and attitudes of smallholder farmers in Tanzania. The two datasets produce relatively comparable results for the primary predictors of inorganic fertilizer use: agricultural extension and whether or not a household grows cash crops. However, other factors influencing input use produce results that vary in magnitude and direction of the effect across the two datasets. Distinct survey instrument designs make it difficult to test the robustness of the models on input use other than inorganic fertilizer. This brief uses data inorganic fertilizer use, rather than adoption per se. The TZNPS did not ask households how recently they began using a certain product and although the FF survey asked respondents how many new inputs were tried in the past four planting seasons, they did not ask specifically about inorganic fertilizer.

EPAR Research Brief #179
Publication Date: 07/23/2012
Type: Data Analysis
Abstract

This brief presents our analysis of agricultural input usage in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that a minority of farmers used inputs during the survey period, with 45% of farmers using at least one of inorganic or organic fertilizer, persticides, herbicides, or fungicides, or improved variety seed. A separate appendix includes details on our analyses.

EPAR Research Brief #187
Publication Date: 07/11/2012
Type: Data Analysis
Abstract

This brief present our analysis of maize cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that Maize was the most commonly grown crop in Tanzania – cultivated by 83% of farming households. Eighty-two percent of agricultural households reported consuming maize flour during the week prior to being surveyed. About half of those households grew nearly all of the maize they consumed, making maize production an integral part of the farming household diet. A separate appendix includes details on our analyses.

EPAR Research Brief #188
Publication Date: 07/11/2012
Type: Data Analysis
Abstract

This brief presents our analysis of rice paddy cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that Paddy was the sixth most commonly cultivated priority crop. Nationally, paddy was cultivated by 17% of farming households, with male- and female-headed households cultivating paddy at a similar rate.2 Cultivation rates varied widely across zones, ranging from 51% of households in Zanzibar to only 5% in the Northern Zone. A separate appendix includes additional detail on our analyses.