Research Topics

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR Technical Report #354
Publication Date: 11/29/2018
Type: Research Brief
Abstract

Precise agricultural statistics are necessary to track productivity and design sound agricultural policies. Yet, in settings where intercropping is prevalent, even crop yield can be challenging to measure. In a systematic survey of the literature on crop yield in low-income settings, we find that scholars specify how they estimate the yield denominator in under 10% of cases. Using household survey data from Tanzania, we consider four alternative methods of allocating land area on plots that contain multiple crops, and explore the implications of this measurement decision for analyses of maize and rice yield. We find that 64% of cultivated plots contain more than one crop, and average yield estimates vary with different methods of calculating area planted. This pattern is more pronounced for maize, which is more likely than rice to share a plot with other crops. The choice among area methods influences which of these two staple crops is found to be more calorie-productive per ha, as well as the extent to which fertilizer is expected to be profitable for maize production. Given that construction decisions can influence the results of analysis, we conclude that the literature would benefit from greater clarity regarding how yield is measured across studies.

EPAR Technical Report #201
Publication Date: 09/12/2012
Type: Data Analysis
Abstract

This brief explores how two datasets – The Tanzania National Panel Survey (TZNPS) and the TNS-Research International Farmer Focus (FF) – predict the determinants of inorganic fertilizer use among smallholder farmers in Tanzania by using regression analysis. The (TZNPS) was implemented by the Tanzania National Bureau of Statistics, with support from the World Bank Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA) team and includes extensive information on crop productivity and input use. The FF survey was funded by the Bill and Melinda Gates Foundation and implemented by TNS Research International and focuses on the on the behaviors and attitudes of smallholder farmers in Tanzania. The two datasets produce relatively comparable results for the primary predictors of inorganic fertilizer use: agricultural extension and whether or not a household grows cash crops. However, other factors influencing input use produce results that vary in magnitude and direction of the effect across the two datasets. Distinct survey instrument designs make it difficult to test the robustness of the models on input use other than inorganic fertilizer. This brief uses data inorganic fertilizer use, rather than adoption per se. The TZNPS did not ask households how recently they began using a certain product and although the FF survey asked respondents how many new inputs were tried in the past four planting seasons, they did not ask specifically about inorganic fertilizer.

EPAR Technical Report #184
Publication Date: 07/11/2012
Type:
Abstract

This brief provides an overview of the national and zonal characteristics of agricultural production in Tanzania using the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). More detailed information and analysis is available in the separate EPAR Tanzania LSMS-ISA Reference Report, Sections A-G.

EPAR Research Brief #187
Publication Date: 07/11/2012
Type: Data Analysis
Abstract

This brief present our analysis of maize cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that Maize was the most commonly grown crop in Tanzania – cultivated by 83% of farming households. Eighty-two percent of agricultural households reported consuming maize flour during the week prior to being surveyed. About half of those households grew nearly all of the maize they consumed, making maize production an integral part of the farming household diet. A separate appendix includes details on our analyses.

EPAR Research Brief #188
Publication Date: 07/11/2012
Type: Data Analysis
Abstract

This brief presents our analysis of rice paddy cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that Paddy was the sixth most commonly cultivated priority crop. Nationally, paddy was cultivated by 17% of farming households, with male- and female-headed households cultivating paddy at a similar rate.2 Cultivation rates varied widely across zones, ranging from 51% of households in Zanzibar to only 5% in the Northern Zone. A separate appendix includes additional detail on our analyses.

EPAR Research Brief #189
Publication Date: 04/09/2012
Type: Data Analysis
Abstract

This brief presents our analysis of legume cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that Tanzanian farmers reported growing eight different varieties of food legumes: beans, groundnuts, cowpeas, mung beans, chickpeas, bambara nuts, field peas, soya beans, and pigeon peas. Fifty-seven percent of households in Tanzania grew at least one of these crops during the long and/or short rainy seasons.  A separate appendix includes details on our analyses.

EPAR Research Brief #190
Publication Date: 03/30/2012
Type: Data Analysis
Abstract

This brief presents a comparative analysis of men and women and of male- and female-headed households in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We compare farm activity, productivity, input use, and sales as well as labor allocations by gender of the respondent and of the household head. In households designated “female-headed” a woman was the decision maker in the household, took part in the economy, control and welfare of the household, and was recognized by others in the household as the head. For questions regarding household labor (both non-farm and farm), the gender of the individual laborer is recorded, and we use this to illustrate the responsibilities of male and female household members. An appendix provides the details for our analyses.