Research Topics

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR Technical Report #355 and EPAR Research Briefs #355A & #355B & #355C
Publication Date: 06/15/2018
Type: Literature Review
Abstract

Many low- and middle-income countries remain challenged by a financial infrastructure gap, evidenced by very low numbers of bank branches and automated teller machines (ATMs) (e.g., 2.9 branches per 100,000 people in Ethiopia versus 13.5 in India and 32.9 in the United States (U.S.) and 0.5 ATMs per 100,000 people in Ethiopia versus 19.7 in India and 173 in the U.S.) (The World Bank 2015a; 2015b). Furthermore, only an estimated 62 percent of adults globally have a banking account through a formal financial institution, leaving over 2 billion adults unbanked (Demirgüç–Kunt et al., 2015). While conventional banks have struggled to extend their networks into low-income and rural communities, digital financial services (DFS) have the potential to extend financial opportunities to these groups (Radcliffe & Voorhies, 2012). In order to utilize DFS however, users must convert physical cash to electronic money which requires access to cash-in, cash-out (CICO) networks—physical access points including bank branches but also including “branchless banking" access points such as ATMs, point-of-sale (POS) terminals, agents, and cash merchants. As mobile money and branchless banking expand, countries are developing new regulations to govern their operations (Lyman, Ivatury, & Staschen, 2006; Lyman, Pickens, & Porteous, 2008; Ivatury & Mas, 2008), including regulations targeting aspects of the different CICO interfaces. 

EPAR's work on CICO networks consists of five components. First, we summarize types of recent mobile money and branchless banking regulations related to CICO networks and review available evidence on the impacts these regulations may have on markets and consumers. In addition to this technical report we developed a short addendum (EPAR 355a) which includes a description of findings on patterns around CICO regulations over time. Another addendum (EPAR 355b) summarizes trends in exclusivity regulations including overall trends, country-specific approaches to exclusivity, and a table showing how available data on DFS adoption from FII and GSMA might relate to changes in exclusivity policies over time. A third addendum (EPAR 355c) explores trends in CICO network expansion with a focus on policies seeking to improve access among more remote or under-served populations. Lastly, we developed a database of CICO regulations, including a regulatory decision options table which outlines the key decisions that countries can make to regulate CICOs and a timeline of when specific regulations related to CICOs were introduced in eight focus countries, Bangladesh, India, Indonesia, Kenya, Nigeria, Pakistan, Tanzania, and Uganda.

EPAR Technical Report #335
Publication Date: 11/21/2017
Type: Data Analysis
Abstract
EPAR has developed Stata do.files for the construction of a set of agricultural development indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA). We are sharing our code and documenting our construction decisions both to facilitate analyses of these rich datasets and to make estimates of relevant indicators available to a broader audience of potential users. 
Code, Code, Code, Code
EPAR Technical Report #317
Publication Date: 11/16/2017
Type: Data Analysis
Abstract

In this report we analyze three waves nationally-representative household survey data from Kenya, Uganda, Tanzania, Nigeria, Pakistan, Bangladesh, India, and Indonesia to explore sociodemographic and economic factors associated with mobile money adoption, awareness, and use across countries and over time. Our findings indicate that to realize the potential of digital financial services to reach currently unbanked populations and increase financial inclusion, particular attention needs to be paid to barriers faced by women in accessing mobile money. While policies and interventions to promote education, employment, phone ownership, and having a bank account may broadly help to increase mobile money adoption and use, potentially bringing in currently unbanked populations, specific policies targeting women may be needed to close current gender gaps.

Code
EPAR Technical Report #356
Publication Date: 10/31/2017
Type: Data Analysis
Abstract

According to AGRA's 2017 Africa Agriculture Status Report, smallholder farmers make up to about 70% of the population in Africa. The report finds that 500 million smallholder farms around the world provide livelihoods for more than 2 billion people and produce about 80% of the food in sub-Saharan Africa and Asia. Many development interventions and policies therefore target smallholder farm households with the goals of increasing their productivity and promoting agricultural transformation. Of particular interest for agricultural transformation is the degree to which smallholder farm households are commercializating their agricultural outputs, and diversifying their income sources away from agriculture. In this project, EPAR uses data from the World Bank's Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) to analyze and compare characteristics of smallholder farm households at different levels of crop commercialization and reliance on farm income, and to evaluate implications of using different criteria for defining "smallholder" households for conclusions on trends in agricultural transformation for those households.

Code
EPAR Technical Report #337
Publication Date: 06/20/2016
Type: Data Analysis
Abstract

Relative to chronic hunger, seasonal hunger in rural and urban areas of Africa is poorly understood. No estimates are compiled, and limited evidence exists on prevalence, causes, and impacts. This paper contributes to the body of evidence by examining the extent and potential drivers of seasonal hunger using panel data from the Malawi Integrated Household Panel Survey (IHPS). Farmers are commonly thought to use various strategies to smooth consumption, including planting “off-season” crops, investing in post-harvest storage technologies, or generally diversifying farm portfolios including livestock products and/or wild crops. Similarly, when markets are available, farmers may diversify through off-farm income sources in order to purchase food in lean seasons. We investigate whether seasonal hunger – distinct from chronic hunger – exists in Malawi, drawing on two waves of panel data from the LSMS-ISA series. We examine the extent of seasonal hunger, factors associated with variation in seasonal hunger, and how recurring and longer-term seasonal hunger might be associated with various household welfare measures. We find that both urban and rural households report experiencing seasonal hunger in the pre-harvest months, with descriptive evidence suggesting male gender, age, and education of household head, livestock ownership, and storage of crops are associated with lower levels of seasonal hunger. In addition, we find that Malawian households with seasonal hunger harvest crops earlier than average – a short-term coping mechanism that can reduce the crop’s yield and nutritional value, possibly perpetuating hunger.

Code
EPAR Technical Report #310
Publication Date: 11/20/2015
Type: Literature Review
Abstract

Cereal yield variability is influenced by initial conditions such as suitability of the farming system for cereal cultivation, current production quantities and yields, and zone-specific potential yields limited by water availability. However, exogenous factors such as national policies, climate, and international market conditions also impact farm-level yields directly or provide incentives or disincentives for farmers to intensify production. We conduct a selective literature review of policy-related drivers of maize yields in Ethiopia, Kenya, Malawi, Rwanda, Tanzania, and Uganda and pair the findings with FAOSTAT data on yield and productivity. This report presents our cumulative findings along with contextual evidence of the hypothesized drivers behind maize yield trends over the past 20 years for the focus countries.

EPAR Research Brief #242
Publication Date: 01/08/2014
Type: Data Analysis
Abstract

The purpose of this analysis is to provide a measure of marketable surplus of maize in Tanzania. We proxy marketable surplus with national-level estimates of total maize sold, presumably the surplus for maize producing and consuming households. We also provide national level estimates of total maize produced and estimate “average prices” for Tanzania which allows this quantity to be expressed as an estimate of the value of marketable surplus. The analysis uses the Tanzanian National Panel Survey (TNPS) LSMS – ISA which is a nationally representative panel survey, for the years 2008/2009 and 2010/2011. A spreadsheet provides our estimates for different subsets of the sample and using different approaches to data cleaning and weighting. The total number of households for Tanzania was estimated with linear extrapolation based on the Tanzanian National Bureau of Statistics for the years 2002 and 2012. The weighted proportions of maize-producing and maize-selling households were multiplied to the national estimate of total households. This estimate of total Tanzanian maize-selling and maize-producing households was then multiplied by the average amount sold and by the average amount produced respectively to obtain national level estimates of total maize sold and total maize produced in 2009 and 2011.

EPAR Research Brief #216
Publication Date: 08/08/2013
Type: Data Analysis
Abstract

In this brief we analyze patterns of intercropping and differences between intercropped and monocropped plots among smallholder farmers in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). Intercropping is a planting strategy in which farmers cultivate at least two crops simultaneously on the same plot of land. In this brief we define intercropped plots as those for which respondents answered “yes” to the question “Was cultivation intercropped?” We define “intercropping households” as those households that intercropped at least one plot at any point during the year in comparison to households that did not intercrop any plots. The analysis reveals few significant, consistent productivity benefits to intercropping as currently practiced. Intercropped plots are not systematically more productive (in terms of value produced) than monocropped plots. The most commonly cited reason for intercropping was to provide a substitute crop in the case of crop failure. This suggests that food and income security are primary concerns for smallholder farmers in Tanzania. A separate appendix includes the details for our analyses.

EPAR Technical Report #237
Publication Date: 06/09/2013
Type: Data Analysis
Abstract

Local crop diversity and crop cultivation patterns among smallholder farmers have implications for two important elements of the design of agricultural interventions in developing countries. First, crop cultivation patterns may aid in targeting by helping to identify geographic areas where improved seed and other productivity enhancing technologies will be most easily applicable. Second, these patterns may help to identify potential unintended consequences of crop interventions focused on a single crop (e.g. maize). This report analyzes the distribution of crop diversity and crop cultivation patterns, and factors that can lead to changes in these patterns among smallholder farmers in Tanzania with a focus on regional patterns of crop cultivation and changes in these patterns over time, the factors that affect crop diversity and changes in crop diversity, and the level of substitutability between crops grown by smallholder farmers. All analysis is based on the Tanzania National Panel Survey (TNPS) datasets from 2008 and 2010. The paper is structured as follows. Section I provides a description of regional patterns of crop cultivation and crop diversity between the two years of the panel. Section II presents background on the theoretical factors affecting crop choice, and presents our findings on the results of a multivariate analysis on the factors contributing to crop diversity. Finally, Section 3 provides a preliminary analysis of the level of substitutability between cereal crop of importance in Tanzania (maize, rice and sorghum/millet) and also between these cereal crops and non-cereal crops.