Research Topics

EPAR Technical Report #388
Publication Date: 05/30/2019
Type: Data Analysis
Abstract

Designing effective policies for economic development and sustainable rural transformation, and monitoring progress toward the associated policy goals, often entails categorizing populations by their rural or urban status. Yet there exists no universal definition of what constitutes an "urban" area; countries alternately apply criteria related to settlement size, population density, or economic advancement. In this study, we explore the implications of applying different urban definitions in Tanzania and Nigeria, drawing from a wide set of data sources (administrative, remotely-sensed, and survey-based) to understand how urban categorizations align across data types and based on different criteria. To understand how an analysis of rural change is affected by the urban/rural definition applied, we begin with the nationally representative Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), collected in Tanzania (2008-2014) and Nigeria (2010-2015). This data set contains rich information on household demographics and income-generating activities, and crucially contains household geo-coordinates. Nine urban definitions are assessed, based on local administrative designations used by the National Bureaus of Statistics in Tanzania and Nigeria; settlement size (drawing from the Africapolis geospatial database of cities in Africa); population density (drawing from WorldPop); night lights intensity (drawing from the NOAA Nighttime Lights of the World dataset); impervious surface cover (drawing from the NASA Global Man-made Impervious Surface dataset from Landsat); local economic orientation (drawing from the LSMS-ISA); and our subjective assessment of daytime satellite imagery available via Google Earth.

Preliminary results indicate that the urban population share can vary considerably across different definitions, ranging from 11-35% in Tanzania and 20-60% in Nigeria. Nigeria is often found to be more urbanized than Tanzania, although this ordering is reversed for two definitions. In Tanzania, most urban definitions applied are relatively conservative, as compared with the administrative categorization. Thus, it is rare to see segments of the population re-categorized from rural to urban when using another definition, though some officially urban households are recategorized as rural. In Tanzania, these definitions sometimes lead to different conclusions regarding the concentration of poverty in rural versus urban areas, alternately indicating that poverty is increasingly a rural or urban problem. They also produce somewhat diverging stories regarding trends in welfare and farm income shares in the rural population. For example, while most definitions suggest that a growing share of rural homes now access electricity, this time trend disappears when using an economy-focused definition. The pace at which rural households have been shifting away from agriculture (a key component of structural transformation) is estimated to be twice as fast when relying on a night lights urban definition, as compared to the local administrative definition. At the same time, these different definitions paint a consistent picture of the rural farming population in terms of levels of engagement with input and output markets. This reflects the manner in which definitional decisions especially affect the categorization of non-farming (though possibly rural) households.

EPAR Technical Report #363
Publication Date: 02/10/2019
Type: Data Analysis
Abstract

Studies of improved seed adoption in developing countries almost always draw from household surveys and are premised on the assumption that farmers are able to self-report their use of improved seed varieties. However, recent studies suggest that farmers’ reports of the seed varieties planted, or even whether seed is local or improved, are sometimes inconsistent with the results of DNA fingerprinting of farmers' crops. We use household survey data from Tanzania to test the alignment between farmer-reported and DNA-identified maize seed types planted in fields. In the sample, 70% of maize seed observations are correctly reported as local or improved, while 16% are type I errors (falsely reported as improved) and 14% are type II errors (falsely reported as local). Type I errors are more likely to have been sourced from other farmers, rather than formal channels. An analysis of input use, including seed, fertilizer, and labor allocations, reveals that farmers tend to treat improved maize differently, depending on whether they correctly perceive it as improved. This suggests that errors in farmers' seed type awareness may translate into suboptimal management practices. In econometric analysis, the measured yield benefit of improved seed use is smaller in magnitude with a DNA-derived categorization, as compared with farmer reports. The greatest yield benefit is with correctly identified improved seed. This indicates that investments in farmers' access to information, seed labeling, and seed system oversight are needed to complement investments in seed variety development.

EPAR TECHNICAL REPORT #362
Publication Date: 01/16/2019
Type: Data Analysis
Abstract

Self-Help Groups (SHGs) in Sub-Saharan Africa can be defined as mutual assistance organizations through which individuals undertake collective action in order to improve their own lives. “Collective action” implies that individuals share their time, labor, money, or other assets with the group. In a recent EPAR data analysis, we use three nationally-representative survey tools to examine various indicators related to the coverage and prevalence of Self-Help Group usage across six Sub-Saharan African countries. EPAR has developed Stata .do files for the construction of a set of self-help group indicators using data from the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), Financial Inclusion Index (FII), and FinScope.

We compiled a set of summary statistics for the final indicators using data from the following survey instruments:

  • Ethiopia:
    • Ethiopia Socioeconomic Survey (ESS), Wave 3 (2015-16)
  • Kenya:
    • Kenya FinScope, Wave 4 (2015)
    • Kenya FII, Wave 4 (2016)
  • Nigeria
    • Nigeria FII, Wave 4 (2016)
  • Rwanda:
    • Rwanda FII, Wave 4 (2016)
  • Tanzania:
    • Tanzania National Panel Survey (TNPS), Wave 4 (2014-15)
    • Tanzania FinScope, Wave 4 (2017)
    • Tanzania FII, Wave 4 (2016)
  • Uganda:
    • Uganda FinScope, Wave 3 (2013)
    • Uganda FII, Wave 4 (2016)

The raw survey data files are available for download free of charge from the World Bank LSMS-ISA website, the Financial Sector Deepening Trust website, and the Financial Inclusion Insights website. The .do files process the data and create final data sets at the household (LSMS-ISA) and individual (FII, FinScope) levels with labeled variables, which can be used to estimate summary statistics for the indicators.

All the instruments include nationally-representative samples. All estimates from the LSMS-ISA are household-level cluster-weighted means, while all estimates from FII and FinScope are calculated as individual-level weighted means. The proportions in the Indicators Spreadsheet are therefore estimates of the true proportion of individuals/households in the national population during the year of the survey. EPAR also created a Tableau visualization of these summary statistics, which can be found here.

We have also prepared a document outlining the construction decisions for each indicator across survey instruments and countries. We attempted to follow the same construction approach across instruments, and note any situations where differences in the instruments made this impossible.

The spreadsheet includes estimates of the following indicators created in our code files:

Sub-Populations

  • Proportion of individuals who have access to a mobile phone
  • Proportion of individuals who have official identification
  • Proportion of individuals who are female
  • Proportion of individuals who use mobile money
  • Proportion of individuals who have a bank account
  • Proportion of individuals who live in a rural area
  • Individual Poverty Status
    • Two Lowest PPI Quintiles
    • Middle PPI Quintile
    • Two Highest PPI Quintiles

Coverage & Prevalence

  • Proportion of individuals who have interacted with a SHG
  • Proportion of individuals who have used an SHG for financial services
  • Proportion of individuals who depend most on SHGs for financial advice
  • Proportion of individuals who have received financial advice from a SHG
  • Proportion of households that have interacted with a SHG
  • Proportion of households in communities with at least one SHG
  • Proportion of households in communities with access to multiple farmer cooperative groups
  • Proportion of households who have used an SHG for financial services

Characteristics
In addition, we produced estimates for 29 indicators related to characteristics of SHG use including indicators related to frequency of SHG use, characteristics of SHG groups, and individual/household trust of SHGs.

EPAR Technical Report #201
Publication Date: 09/12/2012
Type: Data Analysis
Abstract

This brief explores how two datasets – The Tanzania National Panel Survey (TZNPS) and the TNS-Research International Farmer Focus (FF) – predict the determinants of inorganic fertilizer use among smallholder farmers in Tanzania by using regression analysis. The (TZNPS) was implemented by the Tanzania National Bureau of Statistics, with support from the World Bank Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA) team and includes extensive information on crop productivity and input use. The FF survey was funded by the Bill and Melinda Gates Foundation and implemented by TNS Research International and focuses on the on the behaviors and attitudes of smallholder farmers in Tanzania. The two datasets produce relatively comparable results for the primary predictors of inorganic fertilizer use: agricultural extension and whether or not a household grows cash crops. However, other factors influencing input use produce results that vary in magnitude and direction of the effect across the two datasets. Distinct survey instrument designs make it difficult to test the robustness of the models on input use other than inorganic fertilizer. This brief uses data inorganic fertilizer use, rather than adoption per se. The TZNPS did not ask households how recently they began using a certain product and although the FF survey asked respondents how many new inputs were tried in the past four planting seasons, they did not ask specifically about inorganic fertilizer.

EPAR Research Brief #179
Publication Date: 07/23/2012
Type: Data Analysis
Abstract

This brief presents our analysis of agricultural input usage in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that a minority of farmers used inputs during the survey period, with 45% of farmers using at least one of inorganic or organic fertilizer, persticides, herbicides, or fungicides, or improved variety seed. A separate appendix includes details on our analyses.

EPAR Research Brief #188
Publication Date: 07/11/2012
Type: Data Analysis
Abstract

This brief presents our analysis of rice paddy cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that Paddy was the sixth most commonly cultivated priority crop. Nationally, paddy was cultivated by 17% of farming households, with male- and female-headed households cultivating paddy at a similar rate.2 Cultivation rates varied widely across zones, ranging from 51% of households in Zanzibar to only 5% in the Northern Zone. A separate appendix includes additional detail on our analyses.

EPAR Research Brief #187
Publication Date: 07/11/2012
Type: Data Analysis
Abstract

This brief present our analysis of maize cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that Maize was the most commonly grown crop in Tanzania – cultivated by 83% of farming households. Eighty-two percent of agricultural households reported consuming maize flour during the week prior to being surveyed. About half of those households grew nearly all of the maize they consumed, making maize production an integral part of the farming household diet. A separate appendix includes details on our analyses.

EPAR Research Brief #196
Publication Date: 06/12/2012
Type: Data Analysis
Abstract

This brief presents our analysis of market access in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). The TZNPS asked few direct questions about market access. However, farmers reported information about market participation that sheds light on several important components of the value chain: input markets, including both goods and services; crop storage, processing, and transport; and sales of outputs. A separate appendix includes additional detail on our analyses.

EPAR Research Brief #189
Publication Date: 04/09/2012
Type: Data Analysis
Abstract

This brief presents our analysis of legume cultivation in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We find that Tanzanian farmers reported growing eight different varieties of food legumes: beans, groundnuts, cowpeas, mung beans, chickpeas, bambara nuts, field peas, soya beans, and pigeon peas. Fifty-seven percent of households in Tanzania grew at least one of these crops during the long and/or short rainy seasons.  A separate appendix includes details on our analyses.

EPAR Research Brief #190
Publication Date: 03/30/2012
Type: Data Analysis
Abstract

This brief presents a comparative analysis of men and women and of male- and female-headed households in Tanzania using data from the 2008/2009 wave of the Tanzania National Panel Survey (TZNPS), part of the Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA). We compare farm activity, productivity, input use, and sales as well as labor allocations by gender of the respondent and of the household head. In households designated “female-headed” a woman was the decision maker in the household, took part in the economy, control and welfare of the household, and was recognized by others in the household as the head. For questions regarding household labor (both non-farm and farm), the gender of the individual laborer is recorded, and we use this to illustrate the responsibilities of male and female household members. An appendix provides the details for our analyses.